Cho tam giác ABC nhọn có AD, BE là 2 đường cao cắt nhau tại H.
a)Chứng minh AD+BE<BC+AC
b) Cho biết AC<BC. Khi đó, hãy chứng minh :
1. HA<HB
2.AC+BE<BC+AD
*CÂU A VÀ CÂU B1 MÌNH GIẢI ĐƯỢC RÙI! CÁC BẠN GIÚP MÌNH CÂU B2 NHÉ!CẢM ƠN!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)
Do đó: ΔAEH\(\sim\)ΔBDH(g-g)
Xét tứ giác ABDE:
\(\widehat{AEB}=90^o\left(AE\perp BE\right).\\ \widehat{ADB}=90^o\left(AD\perp BD\right).\\ \Rightarrow\widehat{AEB}=\widehat{ADB}.\)
Mà 2 đỉnh E, D kề nhau, cùng nhìn cạnh AB.
\(\Rightarrow\) Tứ giác ABDE nội tiếp (dhnb).
Xét tứ giác HDCE:
\(\widehat{HEC}=90^o\left(DE\perp EC\right).\\ \widehat{HDC}=90^o\left(HD\perp DC\right).\\ \Rightarrow\widehat{HEC}+\widehat{HDC}=180^o.\)
Mà 2 góc này ở vị trí đối nhau.
\(\Rightarrow\) Tứ giác HDCE nội tiếp (dhnb).
Tứ giác ABDE nội tiếp (cmt).
\(\Rightarrow\widehat{EBD}=\widehat{BAD}.\)
Xét \(\Delta DBH\) và \(\Delta DAC:\)
\(\widehat{BDH}=\widehat{ADC}\left(=90^o\right).\)
\(\widehat{HBD}=\widehat{CAD}\left(\widehat{EBD}=\widehat{BAD}\right).\)
\(\Rightarrow\Delta DBH\sim\Delta DAC\left(g-g\right).\)
\(\Rightarrow\dfrac{DB}{DA}=\dfrac{DH}{DC}.\\ \Rightarrow DB.DC=DH.DA.\)
a: góc AFH+góc AEH=180 độ
=>AEHF nội tiếp
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: BFEC nội tiếp
=>góc IBF=góc IEC
Xét ΔIBF và ΔIEC có
góc IBF=góc IEC
góc I chung
=>ΔIBF đồng dạng với ΔIEC
=>IB/IE=IF/IC
=>IB*IC=IE*IF
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc CDH+góc CEH=90+90=180 độ
=>CDHE nội tiếp
b: góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
góc FEH=góc BAD
góc DEH=góc FCB
mà góc BAD=góc FCB
nên góc FEH=góc DEH
=>EH là phân giác của góc FED
Xét ΔBFE và ΔDHE có
góc BEF=góc DEH
góc BFE=góc DHE
=>ΔBFE đồng dạng với ΔDHE
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: Xet ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
=>ΔBDH đồng dạng với ΔBEC
=>BH/BC=DH/EC
=>BH*EC=DH*BC