Chứng minh rằng: \(a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2\ge2\)Với mọi a,b khác 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x = a + b; y = ab thì:
BĐt tương đương:
\(x^2-2y+\frac{\left(1+y\right)^2}{x^2}\ge2\)
\(\Leftrightarrow x^2\left(x^2-2y\right)+\left(1+y\right)^2-2x^2\ge0\)
\(\Leftrightarrow x^4-2x^2y+y^2+2y+1-2x^2\ge0\)
\(\Leftrightarrow\left(x^2-y-1\right)^2\ge0\left(lđ\right)\)
Đến đây bạn tự kết luận nha
Ta có phép biến đổi tương đương:
\(a^2+b^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\Leftrightarrow\frac{\left(a+b\right)^2\left(a^2+b^2\right)+\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\)
\(\Leftrightarrow\left(a+b\right)^2\left(a^2+b^2\right)+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2\ge0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng với mọi a,b)
Các bđt trên tương đương với nhau nên bđt cần chứng minh đúng
Vậy \(a^2+b^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\)
Vì vai trò a,b,c như nhau nên ta giả sử
\(a\ge b\ge c>0\)
Ta có: \(2b\left(a+c\right)^2-\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+c\right)\left(a-b\right)\left(b-c\right)\ge0\)
\(\Rightarrow2b\left(a+c\right)^2\ge\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Khi đó:
\(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}\) (1)
Mà \(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}-2=\frac{\left(a^2+c^2-ab-bc\right)^2}{\left(a+c\right)^2\left(ab+bc+ca\right)}\ge0\) (2)
Từ (1) và (2) =>Đpcm
Ta dễ dàng chứng minh được \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge1\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge\frac{a^2+b^2+c^2+a^2}{ab+bc+ac+a^2}=\frac{2a^2+b^2+c^2}{\left(a+c\right)\left(a+b\right)}\)
Suy ra cần chứng minh \(\frac{2a^2+b^2+c^2}{\left(a+b\right)\left(a+c\right)}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
Điều này tương đương với \(\left(b+c\right)\left(2a^2+b^2+c^2\right)+8abc\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow2a^2b+2a^2c+b^3+b^2c+c^2b+c^3+8abc\ge2\left(2abc+a^2b+ac^2+a^2c+b^2c+b^2a+bc^2\right)\)
\(\Leftrightarrow\left(b^2-2bc+c^2\right)\left(b+c-2a\right)\ge0\Leftrightarrow\left(b-c\right)^2\left(b+c-2a\right)\ge0\) (luôn đúng)
Vậy bđt ban đầu được chứng minh
Bất đẳng thức sau đây đúng với mọi a, b, c không âm:
\(\left(ab+bc+ca\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{49}{18}+k\left(\frac{a}{b+c}-2\right)\)
với \(k=\frac{23}{25}\).
Note. \(k_{\text{max}}\approx\text{0.92102588865167}\) là nghiệm của phương trình bậc 5:
15116544*k^5+107495424*k^4-373143024*k^3+280903464*k^2+209797812*k-227353091 = 0
Cho a, b khác 0. Chứng minh:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-1\ge2\left(\frac{a^2-b^2}{ab}\right)\)
Đặt \(\frac{a}{b}=x\Rightarrow\frac{b}{a}=\frac{1}{x}\)
\(\Rightarrow x^2+\frac{1}{x^2}-1>2\left(x-\frac{1}{x}\right)\)
\(\Leftrightarrow\frac{x^4-2x^3-x^2+2x+1}{x^2}>0\)
\(\Leftrightarrow x^3\left(x-2\right)-x\left(x-2\right)+1>0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1>0\)
Có: \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\)là tích của 4 số tự nhiên liên tiếp ta có:
\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)\ge0\)
\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1\ge1>0\)
Đúng không ta?
Sửa từ dòng số 6:
\(\Leftrightarrow\)\(\left(x^2-x-2\right)\left(x^2-x\right)+1\ge0\)
Đặt \(x^2-x=t\)
\(\Rightarrow\left(t-2\right)t+1\ge0\)
\(\Leftrightarrow t^2-2t+1\ge0\)
\(\Leftrightarrow\left(t-1\right)^2\ge0\)( luôn đúng )
Dấu " = " xảy ra khi ........................
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
Ta có:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)
\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)
Tương tự ta được:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)
Vậy ta cần chứng minh:
\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)
Ta viết lại bất đẳng thức trên thành:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.
Đặt \(P=a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2\), ta được:
\(P=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\)
Áp dụng bất đẳng thức Cô-si với bộ \(\left(a+b\right)^2\) và \(\left(\frac{1+ab}{a+b}\right)^2\), ta có:
\(P=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\ge2\sqrt{\left(a+b\right)^2\left(\frac{1+ab}{a+b}\right)^2}-2ab=2\left(1+ab\right)-2ab=2\)
moi hok lop 6