cho hbh ABCD. M,N lần lượt là trung điểm của AB,CD. Chứng minh các tứ giác aMCN và MBND là hbh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D N M
CM: a) Ta có: AM = MB = 1/2AB (gt)
ND = NC = 1/2DC (gt)
mà AB = CD (gt) => 1/2AB = 1/2CD
=> AM = MB = ND = NC
Xét tứ giác AMCN có: AM = MC (cmt)
AM // MC (gt)
=> tứ giác AMCN là hình bình hành
b) Xét tứ giác MBND có : MB // DM (gt)
MB = DN (cmt)
=> tứ giác MBND là hình bình hành
Ta có: AM=MB=AB/2 ( M là trung điểm AB)
DN=NC=DC/2 (N là trung điểm DC)
Mà: AB=AC (ABCD LÀ HBH)
=> AM=MB=DN=NC
Xét tứ giác AMCN:
AM=NC (cmt)
AM//NC (AB//CD)
Vậy AMCN là hình bình hành
b.
Xét tứ giác AMND:
AM=ND (cmt)
AM//ND (AB//CD)
Vậy AMDN là hình bình hành
C. hình như bạn chép sai đề rồi: TK??
1.
AB=CD (cặp cạnh đối hbh)
AM=AB/2 và CN=CD/2
=> AM=CN (1)
AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)
Từ (1) và (2) => AMCN là hbh(Tứ giác có một cặp cạnh đối // và = nhau thì tứ giác đó là hbh)
2.
a. M là trung điểm AB; N là trung điểm AC => MN là đường trung bình của tgABC
=> MN//BC => MN//BP và MN=BP=BC/2
=> BMNP là hbh (lý do như bài 1)
b. Ta có BMNP là hbh và ^B=90 => BMNP là HCN
\(BC=\sqrt{AC^2-AB^2}=\sqrt{5^2-3^2}=4cm.\)
Từ kq câu a => MN=BC/2=4/2=2 cm
C/m tương tự câu a có NP là đường trung bình của tg ABC => NP=AB/2=3/2=1,5 cm
Chu vi BMNP là
(2+1,5)x2=7 cm
a: ABCD là hình chữ nhật
=>O là trung điểm chug của AC và BD; AC=BD
=>OM=ON
Xét ΔAON và ΔCOM có
OA=OC
góc AON=góc COM
ON=OM
=>ΔAON=ΔCOM
Xet tứ giác ANCM có
O là trung điểm chung của AC và NM
=>ANCM là hình bình hành
b: Xét ΔDMC có OH//MC
nên DO/OM=DH/HC
=>DH/HC=2/1=2
=>DH=2HC
Xét ΔDOH có
N là trung điểm của DO
NE//OH
=>E là trung điểm của DH
=>DE=EH=1/2DH=HC
=>EH=1/3*DC
Xét ΔMFB và ΔMCD có
góc MFB=góc MCD
góc FMB=góc CMD
=>ΔMFB đồng dạng với ΔMCD
=>FB/CD=MB/MD=1/3
=>FB=1/3CD=EH
a: Gọi O là giao của AC và BD
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AECG có
AE//CG
AE=CG
Do đó: AECG là hình bình hành
=>AG//CE và AG=CE
Xét tứ giác AHCF có
AH//CF
AH=CF
Do đó: AHCF là hình bình hành
=>AF//CH và AF=CH
Xét ΔANB có
E là trung điểm của AB
EM//AN
Do đó: M là trung điểm của BN
=>BM=MN
Xét ΔDMC có
G là trung điểm của DC
GN//MC
Do đó: N là trung điểm của DM
=>DN=MN=MB=1/3DB
DN=1/3DB
DO=1/2DB
Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)
Xét ΔADC có
DO là trung tuyến
DN=2/3DO
Do đó: N là trọng tâm
=>A,N,G thẳng hàng và C,N,H thẳng hàng
Xét ΔABC có
BO là trung tuyến
BM=2/3BO
Do đó: M là trọng tâm
=>A,M,F thẳng hàng và C,M,E thẳng hàng
Xét ΔEBM và ΔGDN có
EB=GD
\(\widehat{EBM}=\widehat{GDN}\)
BM=DN
Do đó: ΔEBM=ΔGDN
=>EM=GN
Xét tứ giác EMGN có
EM//GN
EM=GN
Do đó: EMGN là hình bình hành
b: Để EMGN là hình chữ nhật thì EG=NM
=>\(AD=\dfrac{BD}{3}\)
a) Xét tứ giác AMND có
AM//ND
\(AM=ND\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: AMND là hình bình hành
Suy ra: AD=MN
b) Xét tứ giác BCNM có
BM//CN
\(BM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: BCNM là hình bình hành
Xét tứ giác AMCN có
AM//CN
\(AM=CN\left(\dfrac{1}{2}AB=\dfrac{1}{2}CD\right)\)
Do đó: AMCN là hình bình hành
Suy ra: AN//CM
hay EN//MF
Xét tứ giác BMDN có
BM//DN
\(BM=DN\left(\dfrac{1}{2}AB=\dfrac{1}{2}DC\right)\)
Do đó: BMDN là hình bình hành
Suy ra: BN//MD
hay NF//ME
Xét tứ giác MENF có
ME//NF(cmt)
MF//NE(cmt)
Do đó: MENF là hình bình hành
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành