Cho hai tam giác đều ABE và BCD bằng nhau trên hình 1.5. Tìm phép tịnh tiến biến ba điểm A, B, E theo thứ tự thành ba điểm B, C, D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phép tịnh tiến biến ba điểm A, B, E theo thứ tự thành ba điểm B, C, D là phép tịnh tiến theo v→ như hình vẽ trên: vecto v→=AB→
Đáp án D
Phát biểuđúng: a , c, e, f, g, i, j, l
b. Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó có thể là phép tịnh tiến
d. Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính
h. Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có AB = A’B’.
k. Nếu phép dời hình biến điểm A thành điểm B thì nó cũng biến điểm B thành A (phát biểu không đúng với phép tịnh tiến)
a. Các phép biến một điểm A thành chính nó:
Phép đồng nhất:
- Phép tịnh tiến theo vectơ 0 .
- Phép quay tâm A, góc φ = 0º.
- Phép đối xứng tâm A.
- Phép vị tự tâm A, tỉ số k = 1.
- Ngoài ra còn có:
- Phép đối xứng trục mà trục đi qua A.
b. Các phép biến hình biến điểm A thành điểm B:
- Phép tịnh tiến theo vectơ AB .
- Phép đối xứng qua đường trung trực của đoạn thẳng AB.
- Phép đối xứng tâm qua trung điểm của AB.
- Phép quay mà tâm nằm trên đường trung trực của AB.
- Phép vị tự mà tâm là điểm chia trong hoặc chia ngoài đoạn thẳng AB theo tỉ số k.
c. Phép tịnh tiến theo vectơ v //d.
- Phép đối xứng trục là đường thẳng d’ ⊥ d.
- Phép đối xứng tâm là điểm A ∈ d.
- Phép quay tâm là điểm A ∈ d, góc quay φ =180º.
- Phép vị tự tâm là điểm I ∈ d.
Đáp án A.
Ta có hình vẽ bên.
Từ A C = 3 ⇒ A B = B E = E F = F A = 2 B C = C G = G H = H B = 1 . Do I = E C ∩ G H ⇒ I là trung điểm của HG. Suy ra B I = B H 2 + H G 2 2 = 1 2 + 1 2 2 = 5 2
Q B ; - 90 ° ( I ) = J ⇒ B I ⊥ B J B I = B J ⇒ ∆ B I J vuông cân tại B.
Vậy I J = B I 2 = 5 2 . 2 = 10 2
Đáp án A.
Ta có hình vẽ bên.
Từ AC = 3
là trung điểm của HG.
Suy ra BI =
=> ∆ BIJ vuông cân tại B
+ Ta có :
với B’ là điểm thỏa mãn
với C’ là điểm thỏa mãn
Vậy (hình vẽ).
+ ⇔ D đối xứng với G qua A (hình vẽ).
a)
Các phép biến hình lần lượt là: Phép tịnh tiến theo véc tơ \(\overrightarrow{0}\); Phép quay tâm A góc \(\phi\) bất kì; phép vị tự tâm A tỉ số k bất kì.
b)
Phép tịnh tiến theo véc tơ \(\overrightarrow{AB}\); Phép đối xứng tâm qua trung điểm của AB; Phép quay tâm I là trung điểm của AB và góc \(\phi=90^o\); Phép vị tự tâm A tỉ số \(k=AB\).
c)
Phép tịnh tiến theo một véc tơ bất kì; Phép đối xứng tâm có tâm đối xứng nằm trên đường thẳng d; Phép quay bất kì; Phép vị tự có tâm nằm trên đường thẳng d.