Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x^3/8 = y^3/64 = z^3/216
=> (x/2)^3 = (y/4)^3 = (z/6)^3
=> x/2 = y/4 = z/6
=> x^2/4 = y^2/16 = z^2/36 = (x^2 + y^2 + z^2)/(4 + 16 + 36) = 14/56 = 1/4 (t.c dãy tỉ số bằng nhau)
Suy ra :
x^2 = 1 => x = 1 v x = -1
y^2 = 4 => y = 2 v y = -2
z^2 = 9 => z = 3 v z = -3
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{Ta có:}\)\(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\)
\(\Rightarrow\frac{3}{8}x=\frac{3}{8}.\frac{y}{8}=\frac{3}{8}.\frac{z}{17}\)
\(\Rightarrow x=\frac{y}{8}=\frac{z}{27}\)
\(\text{Đặt:}\)\(x=\frac{y}{8}=\frac{z}{27}=k\)
\(\Rightarrow x=k\)
\(\frac{y}{8}=k\Rightarrow y=8k\)
\(\frac{z}{27}=k\Rightarrow z=27k\)
\(\text{Có:}\)\(2x^2-2y^2-z^2=1\)
\(\Rightarrow\left(2k\right)^2+2\left(8k^2\right)-27k^2=1\)
\(\Rightarrow k^2.\left(2+2.8^2-27^2\right)=1\)
\(\Rightarrow k^2.\left(-599\right)=1\)
\(\Rightarrow k^2=\frac{-1}{599}\left(\text{Vô lí}\right)\)
\(\Rightarrow x,y,z\text{ ko có gtrị}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 3x/8= 3y/64= 3z/216
=> (3/8)x=(3/8)(y/8)=(3/8)(z/27)
=> x=y/8=z/27
=> x=k; y=8k; z=27k
Lại có: 2x^2 + 2y^2- z^2 = 1
2k^2 + 2(8k^2) - (27k)^2=1
k^2(2+2*8^2-27^2)= 1
k^2*(-599)=1
k^2= 1/-599( vô lí)
Vậy x,y,z không có giá trị
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ đẳng thức : \(\frac{4z-10y}{3}=\frac{10x-3z}{4}=\frac{3y-4x}{10}\)
\(\Rightarrow\frac{3\left(4z-10y\right)}{3^2}=\frac{4\left(10x-3z\right)}{4^2}=\frac{10\left(3y-4x\right)}{10^2}\)
\(\Rightarrow\frac{12z-30y}{3^2}=\frac{40x-12z}{4^2}=\frac{30y-40x}{10^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12z-30y}{3^2}=\frac{40x-12z}{4^2}=\frac{30y-40x}{10^2}=\frac{12z-30y+40x-12z+30y-40x}{3^2+4^2+10^2}=\frac{0}{125}=0\)
\(\Rightarrow\hept{\begin{cases}4z=10y\\10x=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{10}=\frac{y}{4}\\\frac{z}{10}=\frac{x}{3}\end{cases}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{10}\Rightarrow\frac{x}{3}=\frac{2x}{6}=\frac{y}{4}=\frac{3y}{12}=\frac{z}{10}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{10}=\frac{2x}{6}=\frac{3y}{12}=\frac{2x+3y-z}{12+6-10}=\frac{40}{8}=5\)
=> x = 3.5 = 15;
y = 4.5 = 20;
z = 10.5 = 50
Vậy x = 15 ;y = 20 ; z = 50
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 3x/8= 3y/64= 3z/216
=> (3/8)x=(3/8)(y/8)=(3/8)(z/27)
=> x=y/8=z/27
=> x=k; y=8k; z=27k
Lại có: 2x^2 + 2y^2- z^2 = 1
2k^2 + 2(8k^2) - (27k)^2=1
k^2(2+2*8^2-27^2)= 1
k^2*(-599)=1
k^2= 1/-599( vô lí)
Vậy x,y,z không có giá trị
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\hept{\begin{cases}2x=3y\\2y=3z\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{y}{3}=\frac{z}{2}\end{cases}}\Leftrightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{4}=t\)
suy ra \(\hept{\begin{cases}x=9t\\y=6t\\z=4t\end{cases}}\)
\(xyz=9t.6t.4t=216t^3=216\Leftrightarrow t=1\)
\(\Rightarrow\hept{\begin{cases}x=9\\y=6\\z=4\end{cases}}\)