41 x 3 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x-36:18=12-15\\ \Rightarrow x-2=-3\\ \Rightarrow x=-1\\ b,92-\left(17+x\right)=72\\ \Rightarrow17+x=20\\ \Rightarrow x=3\\ c,720:\left[41-\left(2x+5\right)\right]=40\\ \Rightarrow41-\left(2x+5\right)=18\\ \Rightarrow2x+5=23\\ \Rightarrow2x=18\\ \Rightarrow x=9\\ d,\left(x+2\right)^3-23=41\\ \Rightarrow\left(x+2\right)^3=64\\ \Rightarrow\left(x+2\right)^3=4^3\\ \Rightarrow x+2=4\\ \Rightarrow x=2\)
Xét \(\frac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}}+\sqrt{45-4\sqrt{41}}}=\frac{8\sqrt{41}}{\sqrt{\left(\sqrt{41}+2\right)^2}+\sqrt{\left(\sqrt{41}-2\right)^2}}=\frac{8\sqrt{41}}{\sqrt{41}+2+\sqrt{41}-2}=\frac{8\sqrt{41}}{2\sqrt{41}}=4\)
Phương trình trên tương đương:
x3+4x+5=0
<=>x(x2-1)+5(x+1)=0
<=>x(x-1)(x+1)+5(x+1)=0
<=>(x+1)(x2-x+5)=0
<=>x+1=0 hoặc x2-x+5=0(vô nghiệm)
<=>x=-1
Vậy pt trên có nghiệm là x=-1
\(\frac{27}{23}+\frac{-4}{23}+\frac{1}{2}+\frac{-4}{8}< x< \frac{7}{3}+\frac{13}{41}+\frac{28}{41}\)
\(\Rightarrow\frac{27}{23}-\frac{4}{23}+\frac{1}{2}-\frac{4}{8}< x< \frac{7}{3}+\frac{13}{41}+\frac{28}{41}\)
\(\Rightarrow1+0< x< \frac{7}{3}+\frac{3}{3}\)
\(\Rightarrow1< x< \frac{10}{3}\)
\(\Rightarrow1< x< 3,333333333\)
\(\Rightarrow x\in\left\{2;3\right\}\)
Vậy : ....
ta co : \(\frac{27}{23}+\frac{-4}{23}+\frac{1}{2}+\frac{-4}{8}< x< \frac{7}{3}+\frac{13}{41}+\frac{28}{41}\)
=> \(1< x< \frac{10}{3}\)
vi x la so nguyen => \(1< x\le3\)
con lai ban tu lam
\(\dfrac{x+1}{x-3}-\dfrac{41}{x+3}+\dfrac{x^2+22}{9-x^2}=0\left(ĐKXĐ:x\ne3;x\ne-3\right)\\ \Leftrightarrow\dfrac{x+1}{x-3}-\dfrac{41}{x+3}-\dfrac{x^2+22}{x^2-9}=0\\ \Leftrightarrow\dfrac{\left(x+1\right)\left(x+3\right)-41\left(x-3\right)-x^2-22}{x^2-9}=0\\ \Leftrightarrow x^2+4x+3-41x+123-x^2-22=0\\ \Leftrightarrow-37x+104=0\\ \Leftrightarrow-37x=-104\\ \Leftrightarrow x=\dfrac{104}{37}\left(tmđk\right)\)
Vậy \(x=\dfrac{104}{37}\) là nghiệm của pt.
\(\frac{70}{3}\left(\frac{39}{30}+\frac{39}{42}\right)-\frac{246}{7}\div\left(\frac{41}{56}+\frac{41}{72}\right)\)
\(=\frac{70}{3}\left(\frac{13}{10}+\frac{13}{14}\right)-\frac{246}{7}\div\left(\frac{41}{7\cdot8}+\frac{41}{8\cdot9}\right)\)
\(=\frac{70}{3}\left(1+\frac{3}{10}+1-\frac{1}{14}\right)-\frac{246}{7}\div\left(\frac{40+1}{7\cdot8}+\frac{40+1}{8\cdot9}\right)\)
\(=\frac{70}{3}\left[\left(1+1\right)+\left(\frac{3}{10}-\frac{1}{14}\right)\right]-\frac{246}{7}\div\left(\frac{5}{7}+\frac{1}{7\cdot8}+\frac{5}{9}+\frac{1}{8\cdot9}\right)\)
\(=\frac{70}{3}\left(2+\frac{8}{35}\right)-\frac{246}{7}\div\left[\frac{5}{7}+\frac{5}{9}+\left(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)\right]\)
\(=\frac{70}{3}\cdot\frac{78}{35}-\frac{246}{7}\div\left[\frac{5}{7}+\frac{5}{9}+\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\right]\)
\(=\frac{35\cdot2\cdot26\cdot3}{3\cdot35}-\frac{246}{7}\div\left(\frac{5}{7}+\frac{5}{9}+\frac{1}{7}-\frac{1}{9}\right)\)
\(=52-\frac{246}{7}\div\left[\left(\frac{5}{7}+\frac{1}{7}\right)+\left(\frac{5}{9}-\frac{1}{9}\right)\right]\)
\(=52-\frac{246}{7}\div\left(\frac{6}{7}+\frac{4}{9}\right)\)
\(=52-\frac{246}{7}\div\frac{82}{63}\)
\(=52-\frac{82\cdot3\cdot9\cdot7}{7\cdot82}\)
\(=52-27=25\)
\(\frac{57}{20}-\frac{26}{15}+\frac{139}{20}\div3\)
\(=\frac{57}{20}-\frac{26}{15}+\frac{139}{60}\)
\(=\frac{171}{60}-\frac{104}{60}+\frac{139}{60}=\frac{103}{30}\)
\(\frac{39}{4}+\frac{2}{3}\left(11-\frac{23}{4}\right)\)
\(=\frac{39}{4}+11\cdot\frac{2}{3}-\frac{23}{4}\cdot\frac{2}{3}\)
\(=\frac{39}{4}+\frac{22}{3}-\frac{56}{12}\)
\(=\frac{119}{12}+\frac{88}{12}-\frac{56}{12}=\frac{151}{12}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2002}\right)\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2001}{2002}\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2001\cdot2002\cdot2003}{2\cdot3\cdot4\cdot...\cdot2002\cdot2003\cdot2004}=\frac{1}{2004}\)
41 x 3= 123
OLM duyệt hoài !!!
123=41.3 nha bn