7x6=? 1. =42 2. =52 3. =62
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 5A=5+5^2+...+5^2023
=>4A=5^2023-1
=>A=(5^2023-1)/4
b: 6B=6^2+6^3+...+6^41
=>5B=6^41-6
=>B=(6^41-6)/5
c: 16C=4^4+4^6+...+4^16
=>15C=4^16-4^2
=>C=(4^16-4^2)/15
d: 9D=3^3+3^5+...+3^27
=>8D=3^27-3
=>D=(3^27-3)/8
b. 14 . 29 + 14 . 71 + (1+2+3+....+99) . (199199 . 198 -198198 . 199)
=14.(29+71)+(1+2+3+....+99) . (199.1001 . 198 -198198 . 199)
=14.100+(1+2+3+....+99) . (198198 . 199 -198198 . 199)
=1400+(1+2+3+....+99) .0
=1400
a. 215 . 62 + 42 - 52 . 215
=215.(62-52)+42
=215.10+42
=2150+42
=2192
Tick mình đúng nha bạn !!!!!!!!!!!!!!!
a)
215 . 62 + 42 - 52 . 215
= 215 . ( 62 + 42 - 52 )
= 215 . 52
= 215 . ( 50 + 2 )
= 215 . 50 + 215 . 2
= 10750 + 430
= 11180
b) Nguyễn Hiền Phương làm đúng rồi
a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)
\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)
\(...\)
\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)
Vậy ta có biểu thức:
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)
Vậy B < 1 (đpcm)
Giải:
a) Ta có:
1/22=1/2.2 < 1/1.2
1/32=1/3.3 < 1/2.3
1/42=1/4.4 < 1/3.4
1/52=1/5.5 < 1/4.5
1/62=1/6.6 < 1/5.6
1/72=1/7.7 < 1/6.7
1/82=1/8.8 <1/7.8
⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
B<1/1-1/8
B<7/8
mà 7/8<1
⇒B<7/8<1
⇒B<1
b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46
S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1/1-1/46
S=45/46
Vì 45/46<1 nên S<1
Vậy S<1
Chúc bạn học tốt!
Đặt A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8
Dễ thấy: B=122+132+...+182B=122+132+...+182<A=11⋅2+12⋅3+...+17⋅8(1)<A=11⋅2+12⋅3+...+17⋅8(1)
Ta có:A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8
=1−12+12−13+...+17−18=1−12+12−13+...+17−18
=1−18<1(2)=1−18<1(2)
Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1
12 + 22 + 32 + 42 + 52 + 62 = 222
bạn k mình, mình k lại
SSH:(20152-12):10+1=2015
(12-22)+(32-42)+(52-62)+...+(20132-20142)+20152
-10+(-10)+(-10)+...+(-10)+20152
-10x(2015-1):2+20152=12
=> C=12