Tìm các số nguyên x, y biết:
2x2 + 3xy + y2 - 4x - 3y + 1 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$
$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.
$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$
$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$
d.
$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$
$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$
$=-x^2y+4x^2-2xy^2-10x$
$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$
`Answer:`
a. Thay `x=2` và `y=9` vào biểu thức `A`, ta được:
\(A=2.2^2-\frac{1}{3}.9=2.4-\frac{1}{3}.9=8-3=5\)
b. Thay `x=-1/2` và `y=2/3` vào biểu thức `P`, ta được:
\(P=2.\left(-\frac{1}{2}\right)^2+3.\left(-\frac{1}{2}\right).\left(\frac{2}{3}\right)+\left(\frac{2}{3}\right)^2=2.\frac{1}{4}+3.\left(-\frac{1}{2}\right).\left(\frac{2}{3}\right)+\frac{4}{9}=\frac{1}{2}+\left(-1\right)+\frac{4}{9}=-\frac{1}{18}\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~