K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2020x\left(x+1\right)-2019x-2019=0\)

\(\Leftrightarrow2020x\left(x+1\right)-2019\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2020x-2019\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2020x-2019=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{2019}{2020}\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{-1;\frac{2019}{2020}\right\}\)

19 tháng 2 2021

2020x( x + 1 ) - 2019x - 2019 = 0

<=> 2020x( x + 1 ) - 2019( x + 1 ) = 0

<=> ( x + 1 )( 2020x - 2019 ) = 0

<=> x = -1 hoặc x = 2019/2020

Vậy tập nghiệm của phương trình là S = { -1 ; 2019/2020 }

22 tháng 12 2019

\(DK:x\ge\frac{2020}{2019}\)

PT\(\Leftrightarrow\left(\sqrt{2020x-2019}-\sqrt{2019x-2020}\right)+2019\left(x+1\right)=0\)

\(\Leftrightarrow\frac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\right)=0\)

:)

2 tháng 1 2020

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóvhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó

23 tháng 12 2019

với \(x\ge\frac{2020}{2019}\)

\(\sqrt{2020x-2019}+2019\left(x+1\right)-\sqrt{2019x-20120}\)\(=0\)

\(\Leftrightarrow\sqrt{2020x-2019}-\sqrt{2019x-2020}=-2019\left(x+1\right)\)

\(\Leftrightarrow2020x-2019-\left(2019x-2020\right)=-2019\left(x+1\right)\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)\)

\(\Leftrightarrow\left(x+1\right)+2019\left(x+1\right)\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[1+2019\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)\right]=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)(không thỏa mãn)

vậy phương trình vô nghiệm

NV
26 tháng 12 2020

ĐKXĐ: \(x\ge\dfrac{2020}{2019}>0\)

\(\Leftrightarrow\sqrt{2020x-2019}+\sqrt{2019x-2020}+2019\left(x+1\right)=0\)

\(\Leftrightarrow\dfrac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)

Do \(x>0\) nên hiển nhiên vế trái dương.

Pt vô nghiệm

26 tháng 12 2020

ĐKXĐ: x≥20202019>0x≥20202019>0

⇔√2020x−2019+√2019x−2020+2019(x+1)=0⇔2020x−2019+2019x−2020+2019(x+1)=0

⇔x+1√2020x−2019+√2019x−2020+2019(x+1)=0⇔x+12020x−2019+2019x−2020+2019(x+1)=0

Do x>0x>0 nên hiển nhiên vế trái dương.

Pt vô nghiệm

ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2018};-\dfrac{2}{2019};-\dfrac{1}{505};\dfrac{-5}{2021}\right\}\)

Ta có: \(\dfrac{1}{2018x+1}-\dfrac{1}{2019x+2}=\dfrac{1}{2020x+4}-\dfrac{1}{2021x+5}\)

\(\Leftrightarrow\dfrac{2019x+2-2018x-1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{2021x+5-2020x-4}{\left(2020x+4\right)\left(2021x+5\right)}\)

\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}\)

\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(2018x+1\right)\left(2019x+2\right)=\left(2020x+4\right)\left(2021x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\4074342x^2+6055x+2=4082420x^2+18184x+20\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(nhận\right)\\-8078x^2-12129x-18=0\end{matrix}\right.\)

Ta có: \(-8078x^2-12129x-18=0\)(2)

\(\Delta=\left(-12129\right)^2-4\cdot\left(-8078\right)\cdot\left(-18\right)=146531025\)

Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{12129-12105}{2\cdot\left(-8078\right)}=\dfrac{-6}{4039}\left(nhận\right)\\x_2=\dfrac{12129+12105}{2\cdot\left(-8078\right)}=-\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{-6}{4039};\dfrac{-3}{2}\right\}\)

9 tháng 2 2021

Bạn có chắc là bạn có giải đúng cách của lớp 8 không đấy?

30 tháng 12 2019

mình nghĩ ra 2 cách bn thik cách nào thì làm nhé

Hỏi đáp ToánHỏi đáp Toán

7 tháng 7 2019
  1. Tập xác định của phương trình

  2. Biến đổi vế trái của phương trình

  3. Phương trình thu được sau khi biến đổi

  4. Lời giải thu được

Kết quả: Giải phương trình với tập xác định

x ∈ ∅
7 tháng 7 2019

Cái này tui search mạng nhá

Chứng minh hay giải PT??