Giải phương trình:
\(\sqrt{5x^2+10x+1}+x^2+2x-7=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\in R\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
=>\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x+1-5=0\)
=>\(\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+\left(x+1\right)^2=0\)
=>\(\dfrac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>
\(\dfrac{3x^2+6x+3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+5}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>\(\dfrac{3\left(x^2+2x+1\right)}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x^2+2x+1\right)}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>\(\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)
=>\(\left(x+1\right)^2=0\)
=>x+1=0
=>x=-1(nhận)
\(ĐKXĐ:5x^2+10x+1\ge0\)
\(pt\Leftrightarrow\sqrt{5\left(x^2+2x+1\right)-4}=8-\left(x^2+2x+1\right)\)
\(\Leftrightarrow\sqrt{5\left(x+1\right)^2-4}=8-\left(x+1\right)^2\)
Đặt \(\left(x+1\right)^2=a\left(a\ge0\right)\)
\(\Rightarrow\sqrt{5a-4}=8-a\)
Bình phương lên tìm đc a rồi xem có t/m a > 0 hay ko rồi auto làm nốt
a.
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
b.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)
\(\Rightarrow2x^2-10x=2t^2-8\)
Phương trình trở thành:
\(2t^2-8-3t+6=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x+4}=2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
a: =>-x+2x=3-7
=>x=-4
b: =>6x+2+2x-5=0
=>8x-3=0
hay x=3/8
c: =>5x+2x-2-4x-7=0
=>3x-9=0
hay x=3
d: =>10x2-10x2-15x=15
=>-15x=15
hay x=-1
Ta có : \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=-x^2-2x+4\)
Xét \(x_1< x_2< -1\), khi đó : \(f\left(x_1\right)-f\left(x_2\right)=-x_1^2-2x_1+4+x_2^2+2x_2-4=\left(x_2-x_1\right)\left(x_2+x_1+2\right)< 0\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\). Vậy f(x) đồng biến với mọi \(x< -1\)
Tương tự ta chứng minh được :
+ Với x = -1 thì VT = VP => là nghiệm của pt trên
+ Với x < -1 thì do \(f'\left(x\right)\) nghịch biến nên VT > 5 , \(f\left(x\right)\) đồng biến nên VP < 5 => vô lí
+ Với x > -1 thì do \(f'\left(x\right)\) đồng biến nên VT > 5 , \(f\left(x\right)\)nghịch biến nên VP < 5 => vô lí
Vậy x = -1 là nghiệm duy nhất của phương trình.
Ta có
\(\sqrt{3x^2+6x+7}=\sqrt{3\left(x+1\right)^2+4}\ge2\)
\(\sqrt{5x^2+10x+14}=\sqrt{5\left(x+1\right)^2+9}\ge3\)
4 - 2x - x2 = 5 - (x + 1)2 \(\le5\)
Ta có VT \(\ge5\);VP \(\le\)5
Nên dấu bằng xảy ra khi x = - 1
Ta có pt \(\Leftrightarrow2\left(x^2-5x\right)+\sqrt{5x-x^2}+6=0\)
Đặt \(\sqrt{5x-x^2}=a\left(a\ge0\right)\)
Ta có pt \(\Leftrightarrow-2a^2+a+6=0\Leftrightarrow2a^2-a-6=0\Leftrightarrow\left(2a+3\right)\left(a-2\right)=0\)
đến đây thay a=..rồi tự giải pt bậc 2 nhá !
^.^
ĐK:....
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
<=> \(\left(\sqrt{3x^2+6x+7}-2\right)+\left(\sqrt{5x^2+10x+21}-4\right)=-1-2x-x^2\)
<=> \(\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)
<=> \(\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)
<=> x + 1 = 0
<=> x = -1. ( đối chiếu điều kiện )
Kết luận.
Câu a:
ĐKXĐ: \(x\geq 1\)
\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
\(\Leftrightarrow \sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
\(\Rightarrow x-1=8x-3+2\sqrt{(3x-2)(5x-1)}\) (bình phương 2 vế)
\(\Leftrightarrow 7x-2+2\sqrt{(3x-2)(5x-1)}=0\)
(Vô lý với mọi \(x\geq 1\) )
Do đó PT vô nghiệm.
Câu b)
PT \(\Leftrightarrow \sqrt{3(x^2+2x+1)+4}+\sqrt{5(x^2+2x+1)+9}=5-(x^2+2x+1)\)
\(\Leftrightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}=5-(x+1)^2\)
Vì \((x+1)^2\geq 0, \forall x\) nên:
\(\sqrt{3(x+1)^2+4}\geq \sqrt{4}=2\)
\(\sqrt{5(x+1)^2+9}\geq \sqrt{9}=3\)
\(\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5(1)\)
Mặt khác ta cũng có: \(5-(x+1)^2\leq 5-0=5(2)\)
Từ \((1);(2)\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5\geq 5-(x+1)^2\)
Dấu "=" xảy ra khi $(x+1)^2=0$ hay $x=-1$ (thỏa mãn)
Vậy pt có nghiệm $x=-1$
đk: \(\frac{-5+2\sqrt{5}}{5}\ge x\ge\frac{-5-2\sqrt{5}}{5}\)
Ta có: \(\sqrt{5x^2+10x+1}+x^2+2x-7=0\)
\(\Leftrightarrow\left(\sqrt{5x^2+10x+1}-4\right)+\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\frac{5x^2+10x+1-16}{\sqrt{5x^2+10x+1}+4}+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\frac{5\left(x-1\right)\left(x+3\right)}{\sqrt{5x^2+10x+1}+4}+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(\frac{5}{\sqrt{5x^2+10x+1}+4}+1\right)=0\)
Vì \(\frac{5}{\sqrt{5x^2+10x+1}+4}+1\ge\frac{5}{4}+1>0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-3\left(tm\right)\end{cases}}\)
Vậy x = 1 hoặc x = -3
\(\sqrt{5x^2+10x+1}+x^2+2x-7=0\)(*)
đặt \(t=\sqrt{5x^2+10x+1}\) với \(t\ge0\)
\(t^2=5x^2+10x+1\Leftrightarrow\frac{1}{5}t^2=x^2+2x+\frac{1}{5}\)
ta có: \(x^2+2x-7=x^2+2x+\frac{1}{5}-\frac{36}{5}=\frac{1}{5}t^2-\frac{26}{5}\)
(*) \(\Leftrightarrow t+\frac{1}{5}t^2-\frac{36}{5}=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=4\left(tm\right)\\t=-9\left(loai\right)\end{cases}}\)
vậy \(\sqrt{5x^2+10x+1}=4\)
bình phương 2 vế:
\(5x^2+10x+1=16\)
\(5x^2+10x-15=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
thay vào phương trình ta thấy cả 2 nghiệm đều thỏa mãn.
Vậy \(S=\left\{1;-3\right\}\)
bình phương 2 vế:
\(5x^2+10x+1=\frac{77-5\sqrt{129}}{2}\)
\(10x^2+20x+2=77-5\sqrt{129}\)