\(\sqrt{5x^2+10x+1}+x^2+2x-7=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

đk: \(\frac{-5+2\sqrt{5}}{5}\ge x\ge\frac{-5-2\sqrt{5}}{5}\)

Ta có: \(\sqrt{5x^2+10x+1}+x^2+2x-7=0\)

\(\Leftrightarrow\left(\sqrt{5x^2+10x+1}-4\right)+\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\frac{5x^2+10x+1-16}{\sqrt{5x^2+10x+1}+4}+\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\frac{5\left(x-1\right)\left(x+3\right)}{\sqrt{5x^2+10x+1}+4}+\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(\frac{5}{\sqrt{5x^2+10x+1}+4}+1\right)=0\)

Vì \(\frac{5}{\sqrt{5x^2+10x+1}+4}+1\ge\frac{5}{4}+1>0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-3\left(tm\right)\end{cases}}\)

Vậy x = 1 hoặc x = -3

19 tháng 2 2021

\(\sqrt{5x^2+10x+1}+x^2+2x-7=0\)(*)

đặt \(t=\sqrt{5x^2+10x+1}\) với \(t\ge0\)

\(t^2=5x^2+10x+1\Leftrightarrow\frac{1}{5}t^2=x^2+2x+\frac{1}{5}\)

ta có: \(x^2+2x-7=x^2+2x+\frac{1}{5}-\frac{36}{5}=\frac{1}{5}t^2-\frac{26}{5}\)

(*) \(\Leftrightarrow t+\frac{1}{5}t^2-\frac{36}{5}=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=4\left(tm\right)\\t=-9\left(loai\right)\end{cases}}\)

vậy \(\sqrt{5x^2+10x+1}=4\)

bình phương 2 vế:

\(5x^2+10x+1=16\)

\(5x^2+10x-15=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

thay vào phương trình ta thấy cả 2 nghiệm đều thỏa mãn.

Vậy \(S=\left\{1;-3\right\}\)

bình phương 2 vế: 

\(5x^2+10x+1=\frac{77-5\sqrt{129}}{2}\)

\(10x^2+20x+2=77-5\sqrt{129}\)

30 tháng 3 2019

\(ĐKXĐ:5x^2+10x+1\ge0\)

\(pt\Leftrightarrow\sqrt{5\left(x^2+2x+1\right)-4}=8-\left(x^2+2x+1\right)\)

   \(\Leftrightarrow\sqrt{5\left(x+1\right)^2-4}=8-\left(x+1\right)^2\)

Đặt \(\left(x+1\right)^2=a\left(a\ge0\right)\)

\(\Rightarrow\sqrt{5a-4}=8-a\)

Bình phương lên tìm đc a rồi xem có t/m a > 0 hay ko rồi auto làm nốt

16 tháng 8 2018

Ta có pt \(\Leftrightarrow2\left(x^2-5x\right)+\sqrt{5x-x^2}+6=0\)

Đặt \(\sqrt{5x-x^2}=a\left(a\ge0\right)\)

Ta có pt \(\Leftrightarrow-2a^2+a+6=0\Leftrightarrow2a^2-a-6=0\Leftrightarrow\left(2a+3\right)\left(a-2\right)=0\)

đến đây thay a=..rồi tự giải pt bậc 2 nhá !

^.^

AH
Akai Haruma
Giáo viên
11 tháng 12 2018

Câu a:

ĐKXĐ: \(x\geq 1\)

\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

\(\Leftrightarrow \sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)

\(\Rightarrow x-1=8x-3+2\sqrt{(3x-2)(5x-1)}\) (bình phương 2 vế)

\(\Leftrightarrow 7x-2+2\sqrt{(3x-2)(5x-1)}=0\)

(Vô lý với mọi \(x\geq 1\) )

Do đó PT vô nghiệm.

AH
Akai Haruma
Giáo viên
11 tháng 12 2018

Câu b)

PT \(\Leftrightarrow \sqrt{3(x^2+2x+1)+4}+\sqrt{5(x^2+2x+1)+9}=5-(x^2+2x+1)\)

\(\Leftrightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}=5-(x+1)^2\)

\((x+1)^2\geq 0, \forall x\) nên:

\(\sqrt{3(x+1)^2+4}\geq \sqrt{4}=2\)

\(\sqrt{5(x+1)^2+9}\geq \sqrt{9}=3\)

\(\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5(1)\)

Mặt khác ta cũng có: \(5-(x+1)^2\leq 5-0=5(2)\)

Từ \((1);(2)\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5\geq 5-(x+1)^2\)

Dấu "=" xảy ra khi $(x+1)^2=0$ hay $x=-1$ (thỏa mãn)

Vậy pt có nghiệm $x=-1$

28 tháng 7 2018

a)  ĐK:  \(x\ge5\)

 \(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)

\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)

\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\) (t/m)

Vậy

b)  \(-5x+7\sqrt{x}=-12\)

\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

đến đây tự làm

c) d) e) bạn bình phương lên

28 tháng 7 2018

f)  \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)

             \(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)

           \(\ge\sqrt{9}+\sqrt{25}=8\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)

Vậy...

15 tháng 10 2016

Ta có : \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=-x^2-2x+4\)

  • Trước hết ta xét xem \(f\left(x\right)=-x^2-2x+4\) là hàm số đồng biến hay nghịch biến.

Xét \(x_1< x_2< -1\), khi đó : \(f\left(x_1\right)-f\left(x_2\right)=-x_1^2-2x_1+4+x_2^2+2x_2-4=\left(x_2-x_1\right)\left(x_2+x_1+2\right)< 0\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\). Vậy f(x) đồng biến với mọi \(x< -1\) 

Tương tự ta chứng minh được :

  • f(x) nghịch biến với mọi x > -1
  • \(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) đồng biến với mọi x > -1
  • \(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) nghịch biến với mọi x < -1

+ Với x = -1 thì VT = VP => là nghiệm của pt trên

+ Với x < -1 thì do \(f'\left(x\right)\) nghịch biến nên VT > 5 , \(f\left(x\right)\) đồng biến nên VP < 5 => vô lí

+ Với x > -1 thì do \(f'\left(x\right)\) đồng biến nên VT > 5 , \(f\left(x\right)\)nghịch biến nên VP < 5 => vô lí

Vậy x = -1 là nghiệm duy nhất của phương trình.

15 tháng 10 2016

Ta có 

\(\sqrt{3x^2+6x+7}=\sqrt{3\left(x+1\right)^2+4}\ge2\)

\(\sqrt{5x^2+10x+14}=\sqrt{5\left(x+1\right)^2+9}\ge3\)

4 - 2x - x2 = 5 - (x + 1)2 \(\le5\)

Ta có VT \(\ge5\);VP \(\le\)5

Nên dấu bằng xảy ra khi x = - 1

4 tháng 4 2020

ta có

zế trái :\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=5\)

zế phải : \(4-2x-x^2=5-\left(x+1\right)^2\le5\)

zậy 2 zế đều = 5 , khi đó x=-1 . Zới giá trị này cả 2 bất đẳng thức này đều trở thành đẳng thức

KL ::

19 tháng 7 2019

À câu a mình tự làm được rồi nhé! Các bạn chỉ cần làm câu b cho mình là được.

19 tháng 7 2019

b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)

ĐK \(x\ge0\)

Pt 

<=> \(2\sqrt{x}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)

<=> \(4x+x^2+x+4\sqrt{x^2\left(x+1\right)}=x^2+10x+9\)

 <=> \(4x\sqrt{x+1}=5x+9\)

<=> \(16x^2\left(x+1\right)=25x^2+90x+81\)với mọi \(x\ge0\)

<=> \(16x^3-9x^2-90x-81=0\)

<=> \(x=3\)(tm ĐK)

Vậy x=3

7 tháng 1 2020

ĐK:....

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

<=> \(\left(\sqrt{3x^2+6x+7}-2\right)+\left(\sqrt{5x^2+10x+21}-4\right)=-1-2x-x^2\)

<=> \(\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)

<=> \(\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)

<=> x + 1 = 0 

<=> x = -1. ( đối chiếu điều kiện )

Kết luận.

26 tháng 11 2020

Giải theo cách ngắn gọn nhất nhẹ cậu vì cô Chi đã làm bên dưới rồi

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

Vì vế trái của phương trình không nhỏ hơn 6 , còn vế phải không lớn hơn 6 . Vậy đẳng thức chỉ xảy ra khi cả 2 vế đều bằng 6

=> x = -1

26 tháng 7 2017

a/ \(\hept{\begin{cases}VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\\VP=4-2x-x^2=5-\left(x+1\right)^2\le5\end{cases}}\)

Dấu = xảy ra khi \(x=-1\)

b/ \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)

Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\)thì ta có

\(\hept{\begin{cases}a^2+b^2=2\\a+b=-a^2b^2+3\end{cases}}\)

Đặt \(\hept{\begin{cases}a+b=S\\ab=P\end{cases}}\) thì ta có

\(\hept{\begin{cases}S^2-2P=2\\S=3-P^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(3-P^2\right)^2-2P=2\\S=3-P^2\end{cases}}\)

Thôi làm tiếp đi làm biếng quá.

26 tháng 7 2017

a)3x2+6x+7+5x2+10x+14=42xx2

\(\Leftrightarrow16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21\)

\(\Leftrightarrow-x^2-2x+4\)

  Thế vào ta được:

\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}=-17\)

\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+17=0\)

\(16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21=4-x\left(x+2\right)\)

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not