K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

1) c/m \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

áp dụng BĐT cô shi cho 2 số thực dương ta có:

\(a+b\ge2\sqrt{ab}\);\(b+c\ge2\sqrt{bc}\);\(a+c\ge2\sqrt{ac}\)

cộng vế vs vế:\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

dấu = xảy ra khi a=b=c

vậy...

b)ta có:

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{25}}\)\(A>\frac{1}{\sqrt{25}}+\frac{1}{\sqrt{25}}+...+\frac{1}{\sqrt{25}}\)(25 số hạng)

\(A>\frac{25}{\sqrt{25}}=\sqrt{25}=5\)

vậy.....

 

 

 

12 tháng 12 2016

tức là các số 1/(căn)1; 1/(căn)2... thay cho 1/(căn 25)

6 tháng 9 2020

Câu C : Lần đầu làm dạng này :))

Xét hiệu A - 2 , ta có :

\(A-2=\frac{2\sqrt{a}+2-4a-2}{2a+1}=\frac{2\sqrt{a}-4a}{2a+1}=\frac{2\sqrt{a}\left(1-2\sqrt{a}\right)}{2a+1}\)

Ta thấy :

+) Do \(a\ge0\)\(\Rightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)\le0\)

+) a khác 1 ; \(a\ge0\)=> 2a + 1 > 0

\(\Rightarrow\frac{2\sqrt{a}\left(1-2\sqrt{a}\right)}{2a+1}\le0\)

\(\Leftrightarrow A< 2\)

P/s : sai bỏ qua :))

6 tháng 9 2020

\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}+\frac{\sqrt{a}}{1-a}\right)\)

ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

\(A=\left(\frac{\sqrt{a}+1+1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{a-1}\right)\)

\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{a+2\sqrt{a}+1+a-\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{2}{\sqrt{a}-1}\div\frac{2a+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(A=\frac{2}{\sqrt{a}-1}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{2a+1}\)

\(A=\frac{2\left(\sqrt{a}+1\right)}{2a+1}\)

b) \(a=1-\frac{\sqrt{3}}{2}=\frac{2}{2}-\frac{\sqrt{3}}{2}=\frac{2-\sqrt{3}}{2}\)( tmđk )

Rồi từ đây thế vô :)

c) Nhờ cao nhân làm tiếp chứ em mới lớp 8 thôi ạ :(

17 tháng 6 2016

điều kiện a> 0 

\(D=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1..\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\left(a-\sqrt{a}+1\right)}-\left(2\sqrt{a}+1\right)+1\)

\(\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1=a-\sqrt{a}.\)

b,  D = 2 => \(a-\sqrt{a}=2\Leftrightarrow a-\sqrt{a}-2=0\)

                                                     \(\Leftrightarrow\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)=0\Leftrightarrow\sqrt{a}-1=0\)( vì a > 0 nên \(\sqrt{a}+1>0\))

                                                        \(\Leftrightarrow a=1\)

c, a > 1 =>  \(\sqrt{a}>1\Rightarrow\sqrt{a}-1>0\)

              \(\Rightarrow D=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)>0\)

            Vậy D = | D |  > 0 

d, \(D=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)với mọi a > 0 

   vậy Dmin = - 1/4 khi a = 1/4

                                                       

17 tháng 6 2016

xin lỗi phàn b anh làm sai. Sửa lại như sau :

b, D = 2 => \(a-\sqrt{a}=2\Rightarrow a-\sqrt{a}-2=0\Leftrightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0.\)

                                                                                                    \(\Leftrightarrow\sqrt{a}-2=0\)( vì a > 0, nên căn a + 1 > 0 )

                                                                                                     \(\Leftrightarrow a=4\)

5 tháng 7 2016

Giúp m với

DD
20 tháng 7 2021

\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)(ĐK: \(x\ge0,x\ne1\)

\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(A=\frac{5}{\sqrt{x}}\)

\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{5}{\sqrt{x}}\)

\(\Rightarrow x=5\left(x+\sqrt{x}+1\right)\)

\(\Leftrightarrow4x+5\sqrt{x}+1=0\)(vô nghiệm do \(x\ge0\)

\(A-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)(vì \(x\ne1\))

Do đó \(A< \frac{1}{3}\).

2 tháng 7 2017

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

8 tháng 7 2020

a)  \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne9\end{cases}}\)

\(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(\Leftrightarrow C=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{9-x}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{x-3\sqrt{x}}\)

\(\Leftrightarrow C=\frac{3\sqrt{x}+9}{9-x}:\frac{2\sqrt{x}+4}{x-3\sqrt{x}}\)

\(\Leftrightarrow C=\frac{3}{3-\sqrt{x}}\cdot\frac{x-3\sqrt{x}}{2\sqrt{x}+4}\)

\(\Leftrightarrow C=\frac{-3}{2\sqrt{x}+4}\)

b) Để \(-\frac{3}{2\sqrt{x}+4}< -1\)

\(\Leftrightarrow\frac{1+2\sqrt{x}}{2\sqrt{x}+4}< 0\)

Vì \(\hept{\begin{cases}1+2\sqrt{x}>0\\2\sqrt{x}+4>0\end{cases}\Leftrightarrow C>0}\)

Vậy để C <-1 <=> \(x\in\varnothing\)

c) \(A=\frac{1}{\sqrt{3}-\sqrt{2}}=\sqrt{3}+\sqrt{2}\)

\(\Leftrightarrow A^2=3+2+2\sqrt{5}=5+2\sqrt{5}\)

   \(B=\sqrt{5}+1\)

\(\Leftrightarrow B^2=5+1+2\sqrt{5}=6+2\sqrt{5}\)

Vì \(5+2\sqrt{5}< 6+2\sqrt{5}\)

\(\Leftrightarrow A^2< B^2\)

\(\Leftrightarrow A< B\)

Vậy \(\frac{1}{\sqrt{3}-\sqrt{2}}< \sqrt{5}+1\)