\(\frac{a-\sqrt{a}+1}{\sqrt{a}}\) 

So sánh C và 1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

1) c/m \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

áp dụng BĐT cô shi cho 2 số thực dương ta có:

\(a+b\ge2\sqrt{ab}\);\(b+c\ge2\sqrt{bc}\);\(a+c\ge2\sqrt{ac}\)

cộng vế vs vế:\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

dấu = xảy ra khi a=b=c

vậy...

b)ta có:

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{25}}\)\(A>\frac{1}{\sqrt{25}}+\frac{1}{\sqrt{25}}+...+\frac{1}{\sqrt{25}}\)(25 số hạng)

\(A>\frac{25}{\sqrt{25}}=\sqrt{25}=5\)

vậy.....

 

 

 

12 tháng 12 2016

tức là các số 1/(căn)1; 1/(căn)2... thay cho 1/(căn 25)

8 tháng 7 2020

a)  \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne9\end{cases}}\)

\(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(\Leftrightarrow C=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{9-x}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{x-3\sqrt{x}}\)

\(\Leftrightarrow C=\frac{3\sqrt{x}+9}{9-x}:\frac{2\sqrt{x}+4}{x-3\sqrt{x}}\)

\(\Leftrightarrow C=\frac{3}{3-\sqrt{x}}\cdot\frac{x-3\sqrt{x}}{2\sqrt{x}+4}\)

\(\Leftrightarrow C=\frac{-3}{2\sqrt{x}+4}\)

b) Để \(-\frac{3}{2\sqrt{x}+4}< -1\)

\(\Leftrightarrow\frac{1+2\sqrt{x}}{2\sqrt{x}+4}< 0\)

Vì \(\hept{\begin{cases}1+2\sqrt{x}>0\\2\sqrt{x}+4>0\end{cases}\Leftrightarrow C>0}\)

Vậy để C <-1 <=> \(x\in\varnothing\)

c) \(A=\frac{1}{\sqrt{3}-\sqrt{2}}=\sqrt{3}+\sqrt{2}\)

\(\Leftrightarrow A^2=3+2+2\sqrt{5}=5+2\sqrt{5}\)

   \(B=\sqrt{5}+1\)

\(\Leftrightarrow B^2=5+1+2\sqrt{5}=6+2\sqrt{5}\)

Vì \(5+2\sqrt{5}< 6+2\sqrt{5}\)

\(\Leftrightarrow A^2< B^2\)

\(\Leftrightarrow A< B\)

Vậy \(\frac{1}{\sqrt{3}-\sqrt{2}}< \sqrt{5}+1\)

DD
20 tháng 7 2021

\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)(ĐK: \(x\ge0,x\ne1\)

\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(A=\frac{5}{\sqrt{x}}\)

\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{5}{\sqrt{x}}\)

\(\Rightarrow x=5\left(x+\sqrt{x}+1\right)\)

\(\Leftrightarrow4x+5\sqrt{x}+1=0\)(vô nghiệm do \(x\ge0\)

\(A-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)(vì \(x\ne1\))

Do đó \(A< \frac{1}{3}\).

6 tháng 9 2020

Câu C : Lần đầu làm dạng này :))

Xét hiệu A - 2 , ta có :

\(A-2=\frac{2\sqrt{a}+2-4a-2}{2a+1}=\frac{2\sqrt{a}-4a}{2a+1}=\frac{2\sqrt{a}\left(1-2\sqrt{a}\right)}{2a+1}\)

Ta thấy :

+) Do \(a\ge0\)\(\Rightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)\le0\)

+) a khác 1 ; \(a\ge0\)=> 2a + 1 > 0

\(\Rightarrow\frac{2\sqrt{a}\left(1-2\sqrt{a}\right)}{2a+1}\le0\)

\(\Leftrightarrow A< 2\)

P/s : sai bỏ qua :))

6 tháng 9 2020

\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}+\frac{\sqrt{a}}{1-a}\right)\)

ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

\(A=\left(\frac{\sqrt{a}+1+1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{a-1}\right)\)

\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{a+2\sqrt{a}+1+a-\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(A=\frac{2}{\sqrt{a}-1}\div\frac{2a+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(A=\frac{2}{\sqrt{a}-1}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{2a+1}\)

\(A=\frac{2\left(\sqrt{a}+1\right)}{2a+1}\)

b) \(a=1-\frac{\sqrt{3}}{2}=\frac{2}{2}-\frac{\sqrt{3}}{2}=\frac{2-\sqrt{3}}{2}\)( tmđk )

Rồi từ đây thế vô :)

c) Nhờ cao nhân làm tiếp chứ em mới lớp 8 thôi ạ :(

19 tháng 11 2017

\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{a}}-\frac{1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)

19 tháng 11 2017

còn so sánh với 1 nữa, Bạn làm tiếp đi

5 tháng 7 2016

Giúp m với