\(\frac{3a-4b}{4a-3b}\) biết \(\frac{a}{b}\)= \(\frac{5}{9}\)
Giúp em với ạ, em cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt b=3.a thì E=\(\frac{3a+9a}{4a-12a}=\frac{12a}{-8a}=-\frac{3}{2}\)
Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:
\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)
\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)
\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)
Cộng (1),(2) và (3) có:
\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)
\(\Rightarrow2VP\ge2VT\)
\(\RightarrowĐPCM\)
Gọi \(\frac{a}{b}=\frac{c}{d}=x\Rightarrow a=bx;c=dx\)
Thay vào vế trái ta được
\(\frac{3a-5c}{4a+7c}=\frac{3.bx-5.dx}{4.bx+7.dx}=\frac{x\left(3b-5d\right)}{x\left(4b+7d\right)}=\frac{3b-5d}{4b+7d}\)
Vậy vế trái bằng vế phải
Ta có:\(\frac{a}{b}=\frac{c}{d}=\frac{3a-5c}{3b-5d}\left(1\right)\)
Ta lại có:\(\frac{a}{b}=\frac{c}{d}=>\frac{4a+7c}{4b+7d}\left(2\right)\)
Từ (1) và (2),suy ra : \(\frac{3a-5c}{4a+7c}=\frac{3b-5d}{4b+7d}\)
Cách của mình cũng đúng nhưng khác cách làm của thang Tam thôi
\(\left(\frac{2}{3}+x\right)\left(\frac{1}{5}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{3}+x=0\\\frac{1}{5}-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\-2x=-\frac{1}{5}\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-\frac{2}{3}\\x=\frac{1}{10}\end{cases}}\)
Vậy:.......
#H
\(\frac{a}{b}=\frac{5}{9}\Rightarrow\frac{a}{5}=\frac{b}{9}\)
\(\frac{a}{5}=\frac{b}{9}=\frac{3a}{15}=\frac{4b}{36}=\frac{3a-4b}{-11}\) (1)
\(\frac{a}{5}=\frac{b}{9}=\frac{4a}{20}=\frac{3b}{27}=\frac{4a-3b}{-7}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{3a-4b}{-11}=\frac{4a-3b}{-7}\Rightarrow\frac{3a-4b}{4a-3b}=\frac{11}{7}\)
Sorry!
\(\frac{a}{5}=\frac{b}{9}=\frac{3a}{15}=\frac{4b}{36}=\frac{3a-4b}{-21}\) (1)
Từ (1) và (2) \(\Rightarrow\frac{3a-4b}{-21}=\frac{4a-3b}{-7}\Rightarrow\frac{3a-4b}{4a-3b}=\frac{21}{7}=3\)