K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

sửa đề bài nhá : làm gì có z 

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x-1}{2019}=\frac{3-y}{2020}=\frac{x-1+3-y}{2019+2020}=\frac{4037+2}{2019+2020}=\frac{4039}{4039}=1\)

\(\Leftrightarrow\frac{x-1}{2019}=1\Leftrightarrow x-1=2019\Leftrightarrow x=2020\)

\(\Leftrightarrow\frac{3-y}{2020}=1\Leftrightarrow3-y=2020\Leftrightarrow y=-2017\)

18 tháng 2 2021

x=2020, y= -2017

19 tháng 3 2020

Bài 1:

Ta có:

19 tháng 3 2020

Bạn Vũ Minh Tuấn ơi giúp mình bài 2 nữa nhé ạ

19 tháng 12 2019
https://i.imgur.com/jd3dWdi.jpg
10 tháng 6 2020

x,y,z trong căn mak bạn nên : x = 2022, y = 2023, z = 2024 chứ nhò

11 tháng 3 2020

Bạn hãy dựa vào link này mà tự làm nhé : 

https://olm.vn/hoi-dap/detail/246211413079.html

Bài làm của mình đó !

7 tháng 7 2020

meo hieu haha

28 tháng 10 2019

Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ

28 tháng 10 2019

sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)

                                giải

Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)

\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)

Áp dụng bđt bunhiacopxki ta có:

\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)

Mà \(x,y,z\)nguyên dương

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)

Lấy (1) + (2) ta được:

\(M\ge2+2+2+\frac{1}{3}\)

\(\Rightarrow M\ge\frac{19}{3}\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z\)

16 tháng 3 2020

áp dụng t/c dãy ts = nhau

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)

x/y=1=> x=y

y/z=1=>y=z

z/x=1=>z=x

=> x=y=z

\(\frac{x^{2019}.y^{2020}}{z^{4039}}=\frac{x^{2019}.x^{2020}}{x^{4039}}=\frac{x^{4039}}{x^{4039}}=1\)

20 tháng 9 2019

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x+y+2019}{z}=\frac{y+z-2020}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)

\(=\frac{x+y+2019+y+z-2020+z+x+1}{z+x+y}=2\)

\(\Rightarrow x+y+z=1\)

\(\Rightarrow\hept{\begin{cases}x+y=1-z\\y+z=1-x\\x+z=1-y\end{cases}}\)

Thay vào đầu bài:

\(\frac{1-z+2019}{z}=\frac{1-x-2020}{x}=\frac{1-y+1}{y}\)

\(\Leftrightarrow\frac{2020-z}{z}=\frac{-2019-x}{x}=\frac{2-y}{y}\)

\(\Leftrightarrow\frac{2020}{z}=\frac{-2019}{x}=\frac{2}{y}=\frac{2020-2019+2}{x+y+z}=3\)(Theo t/c dãy tỉ số bằng nhau)

\(\Rightarrow\hept{\begin{cases}z=\frac{2020}{3}\\x=\frac{-2019}{3}\\y=\frac{2}{3}\end{cases}}\)

20 tháng 9 2019

ĐK: x , y, z, x+y+z khác 0

Áp dụng dãy tỉ số bằng nhau: ( kiến thức trong SGK lớp 7 em tìm hiểu lại nhé! )

\(\frac{x+y+2019}{z}=\frac{y+z-2020}{x}=\frac{z+x+1}{y}=\frac{x+y+2019+y+z-2020+z+x+1}{x+y+z}\)

\(=\frac{2x+2y+2z}{x+y+z}=2\)

=> \(\frac{2}{x+y+z}=2\Leftrightarrow x+y+z=1\)  (1)

  \(\frac{x+y+2019}{z}=2\Leftrightarrow x+y+2019=2z\)(2)

\(\frac{y+z-2020}{x}=2\Leftrightarrow y+z-2020=2x\) (3)

\(\frac{z+x+1}{y}=2\Leftrightarrow z+x+1=2y\) (4)

Từ (1) <=> x + y = 1 - z ; y +z =1 - x ; z + x = 1 -y . Lần lượt thế vào (2) ; (3) ; (4) để tìm x, y, z