K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019
https://i.imgur.com/jd3dWdi.jpg
10 tháng 6 2020

x,y,z trong căn mak bạn nên : x = 2022, y = 2023, z = 2024 chứ nhò

NV
25 tháng 9 2019

ĐKXĐ: ...

Đặt \(\left(\sqrt{x-2018};\sqrt{y-2019};\sqrt{z-2020}\right)=\left(a;b;c\right)\) \(\Rightarrow a;b;c>0\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{4a-4}{a^2}+\frac{4b-4}{b^2}+\frac{4c-4}{c^2}=3\)

\(\Leftrightarrow1-\frac{4a-a}{a^2}+1-\frac{4b-4}{b^2}+1-\frac{4c-4}{c^2}=0\)

\(\Leftrightarrow\frac{a^2-4a+4}{a^2}+\frac{b^2-4b+4}{b^2}+\frac{c^2-4c+4}{c^2}=0\)

\(\Leftrightarrow\left(\frac{a-2}{a}\right)^2+\left(\frac{b-2}{b}\right)^2+\left(\frac{c-2}{c}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2018}=2\\\sqrt{y-2019}=2\\\sqrt{z-2020}=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2022\\y=2023\\z=2024\end{matrix}\right.\)

NV
25 tháng 9 2019

\(2x^2+4x+2=21-3y^2\)

\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)

Do \(\left(x+1\right)^2\ge0\Rightarrow7-y^2\ge0\) \(\Rightarrow y^2\le7\) (1)

\(2\left(x+1\right)^2\) là một số tự nhiên chẵn và 3 là số lẻ

\(\Rightarrow7-y^2\) là một số chẵn \(\Rightarrow y^2\) là một số lẻ (2)

Từ (1); (2) \(\Rightarrow y^2\) là số chính phương lẻ và nhỏ hơn 7

\(\Rightarrow y^2=1\Rightarrow y=\pm1\)

\(\Rightarrow2\left(x+1\right)^2=3\left(7-1\right)=18\)

\(\Rightarrow\left(x+1\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
3 tháng 8 2019

Lời giải:

Đặt mẫu số của $B$ là $M$.

Từ \(2018x^3=2019y^3=2020z^3\)

\(\Rightarrow \sqrt[3]{2018}x=\sqrt[3]{2019}y=\sqrt[3]{2020}z=\frac{\sqrt[3]{2018}}{\frac{1}{x}}=\frac{\sqrt[3]{2019}}{\frac{1}{y}}=\frac{\sqrt[3]{2020}}{\frac{1}{z}}=\frac{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)

\(=\frac{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}{8}=\frac{M}{8}\)

\(\Rightarrow \left\{\begin{matrix} x=\frac{M}{8\sqrt[3]{2018}}\\ y=\frac{M}{8\sqrt[3]{2019}}\\ z=\frac{M}{8\sqrt[3]{2020}}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2018x^2=\frac{\sqrt[3]{2018}M^2}{64}\\ 2019y^2=\frac{\sqrt[3]{2019}M^2}{64}\\ 2020z^2=\frac{\sqrt[3]{2020}M^2}{64}\end{matrix}\right.\)

\(\Rightarrow 2018x^2+2019y^2+2020z^2=\frac{M^2(\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020})}{64}=\frac{M^3}{64}\)

\(\Rightarrow B=\frac{\sqrt[3]{\frac{M^3}{64}}}{M}=\frac{M}{4M}=\frac{1}{4}\)

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

13 tháng 8 2019

bn có thể tham khảo ở sách vũ hữu binh nha

9 tháng 5 2021

ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)

Đặt \(\sqrt{x-2019}=a,......\)

Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)

- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)

\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)

- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )

Vậy ...

 

17 tháng 7 2019

1) Ta có: \(2020^2=\left(2019+1\right)^2=2019^2+2.2019+1.\)

\(\Rightarrow1+2019^2=2020^2-2.2019\)

\(\Rightarrow M=\sqrt{1+2019^2+\frac{2019^2}{2020^2}}+\frac{2019}{2020}=\sqrt{2020^2-2.2019+\frac{2019^2}{2020^2}}+\frac{2019}{2020}\)

\(=\sqrt{2020^2-2.2020.\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2}+\frac{2019}{2020}\)

\(=\sqrt{\left(2020-\frac{2019}{2020}\right)^2}+\frac{2019}{2020}=2020-\frac{2019}{2020}+\frac{2019}{2020}\)

\(=2020\)

Vậy M=2020.

2) Xét  : \(k\in N;k\ge2\)ta có:

\(\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{\left(k-1\right)k}-\frac{2}{k}\)

                                          \(=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{k-1}+\frac{2}{k}-\frac{2}{k}\)

\(\Rightarrow\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)

\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}+\frac{1}{k}\)

Cho \(k=3,4,...,2020.\)Ta có:

\(N=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2019^2}+\frac{1}{2020^2}}\)

\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2018}-\frac{1}{2019}\right)+\left(1+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(=2018+\frac{1}{2}-\frac{1}{2020}=2018\frac{1009}{2020}\)

Vậy \(N=2018\frac{1009}{2020}.\)