với a,b,c là số thực không âm thỏa mãn a+b+c=1
tính GTLN của biểu thức P=4ab+2bc+ca
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-c=a+b\ge2\sqrt{ab}\Rightarrow4ab\le\left(1-c\right)^2\)
\(2bc+ca\le2bc+2ca=2c\left(a+b\right)=2c\left(1-c\right)\)
Từ đó ta có:
\(P\le\left(1-c\right)^2+2c\left(1-c\right)=1-c^2\le1\)
\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\)
Tham khảo:
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\s... - Hoc24
2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)
Áp dụng BĐT AM-GM ta có:
\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)
\(S=\frac{17}{4}\Leftrightarrow a=4\)
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?
\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)
\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)
Dấu "=" xảy ra khi a = 4
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
Ta có:
P = a + b + c ≤ a + b + a + b = 2(a + b) ≤ 2(-1) = -2
Ta cũng có:
P = a + b + c ≤ a + b + c - 2abc ≥ a + b + c - 2(-1)(-1)(-1) = -3
Vậy GTNN của P = -3 và GTLN của P = -2.
Ta có thể giải bài toán này bằng cách sử dụng phương pháp điều chỉnh biểu thức P để biểu thức này có thể được phân tích thành tổng của các biểu thức có dạng a(x-y)+b(y-z)+c(z-x), trong đó x,y,z là các số thực không âm. Khi đó, ta có:
P = ab + bc - ca = a(b-c) + b(c-a) + c(a-b) = a(-c+b) + b(c-a) + c(-b+a) = a(x-y) + b(y-z) + c(z-x), với x = -c+b, y = c-a và z = -b+a
Do đó, để tìm giá trị lớn nhất của P, ta cần tìm các giá trị lớn nhất của x, y, z. Ta có:
x = -c+b ≤ b, vì c ≥ 0 y = c-a ≤ c ≤ 2022, vì a+b+c = 2022 z = -b+a ≤ a, vì b ≥ 0
Vậy giá trị lớn nhất của P là:
P_max = ab + bc - ca ≤ b(2022-a) + 2022a = 2022b
Tương tự, để tìm giá trị nhỏ nhất của P, ta cần tìm các giá trị nhỏ nhất của x, y, z. Ta có:
x = -c+b ≥ -2022, vì b ≤ 2022 y = c-a ≥ 0, vì c ≤ 2022 và a ≥ 0 z = -b+a ≥ -2022, vì a ≤ 2022
Vậy giá trị nhỏ nhất của P là:
P_min = ab + bc - ca ≥ (-2022)a + 0b + (-2022)c = -2022(a+c)
Do đó, giá trị lớn nhất của P là 2022b và giá trị nhỏ nhất của P là -2022(a+c).
Lời giải:
Vì $a,b,c$ không âm và $a+b+c=2\Rightarrow 0\leq a,b,c\leq 2$
Khi đó:
$a\leq 12a$
$2b^2=2b.b\leq 4b\leq 12b$
$3c^3=3c^2.c\leq 3.2^2.c=12c$
$\Rightarrow P=a+2b^2+3c^3\leq 12(a+b+c)=24$
Vậy $P_{\max}=24$ khi $(a,b,c)=(0,0,2)$
\(\hept{\begin{cases}a+3c=2016\\a+2b=2017\end{cases}}\left(1\right)\)
Cộng từng vế của hệ (1), ta được:
\(2a+2b+3c=4033\)
\(\Leftrightarrow2a+2b+2c=4033-c\)
\(\Leftrightarrow2\left(a+b+c\right)=4033-c\)
Vì c không âm nên \(4033-c\le4033\)
\(\Rightarrow a+b+c\le\frac{4033}{2}=2016\frac{1}{2}\)
Vậy GTLN của P là \(2016\frac{1}{2}\Leftrightarrow c=0\)
Lúc đó: \(a=2016;b=\frac{1}{2}\)
Ta có: a + 3c = 2016 ; a + 2b = 2017
Do đó : 2a + 2b + 3c = 2a + 2b + 2c + c = 2 (a + b + c) + c = 4033
Suy ra: 2 (a + b + c) = 4033 - c
Để 2 (a + b + c) lớn nhất thì 4033 - c lớn nhất
Nên c nhỏ nhất , mà c >= 0 nên c = 0.
Từ đó ta suy ra : 2 (a + b + c) <= 4033 <=> a + b + c <= 2016,5
Vậy Max P = 2016,5
Khi c = 0 ; a = 2016 ; b = 0,5