Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11)\(\dfrac{3x+1}{x-5}+\dfrac{2x}{x-5}=\dfrac{3x+2x+1}{x-5}=\dfrac{5x+1}{x-5}\)
12)\(\dfrac{4-x^2}{x-3}+\dfrac{2}{x^2-9}=\dfrac{4-x^2}{x-3}+\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(4-x^2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2+\left(2-x\right)\left(2+x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
13)
\(\dfrac{3}{4x-2}+\dfrac{2x}{4x^2-1}=\dfrac{3}{2\left(2x-1\right)}+\dfrac{2x}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{3\left(2x+1\right)}{2\left(2x-1\right)\left(2x+1\right)}+\dfrac{2.2x}{2\left(2x-1\right)\left(2x+1\right)}=\dfrac{6x+3+4x}{2\left(2x-1\right)\left(2x+1\right)}=\dfrac{10x+3}{2\left(2x-1\right)\left(2x+1\right)}\)
14)
\(\dfrac{2x+1}{2x-4}+\dfrac{5}{x^2-4}=\dfrac{2x+1}{2\left(x-2\right)}+\dfrac{5}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(2x+1\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\dfrac{5.2}{2\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+5x+12}{2\left(x-2\right)\left(x+2\right)}\)
Ta có:
\(C=\dfrac{2n-3}{n-2}=\dfrac{2n-4+1}{n-2}=2+\dfrac{1}{n-2}\)
\(C\in Z\Leftrightarrow\dfrac{1}{n-2}\in Z\Leftrightarrow n-2\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow...\)
b1:
AMF đồng dạng ABC
tỉ số : AM/AF = AB/AC
AM/MF = AB/BC
AF/FM = AC/CB
MFD đồng dạng CFD
tỉ số : MF/FD= FD/DC
FM/MD = DC/CF
FD/DM = DF/FC
AFB đồng dạng CFB
tỉ số : AB/ BF = BF/FC
AF/AB =BF/ BC
AF / FB = CF/BC
Do 103 là số nguyên tố lẻ và 32y chẵn nên \(5x^2\) lẻ
Do đó \(x^2\) lẻ
\(\Leftrightarrow x^2:4\) dư 1
Mà \(32y⋮4\Leftrightarrow5x^2-32y:4\) dư 1
Mà \(103:4\) dư 3 nên PT vô nghiệm
Giải:
Xét \(\Delta ACH\) vuông tại \(H\) có:
\(AC^2=AH^2+CH^2\) (định lí Pytago)
\(\Rightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
\(\Rightarrow CH=\sqrt{256}=16\left(cm\right)\) (vì \(CH>0\))
Ta có: \(BC=BH+CH\)
\(\Rightarrow BC=5+16=21\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại \(H\) có:
\(AB^2=BH^2+AH^2\)
\(=12^2+5^2=169\)
\(\Rightarrow AB=\sqrt{169}=13\left(cm\right)\)
\(\Rightarrow\)Chu vi \(\Delta ABC\) là: \(AB+AC+BC=13+20+21=54\left(cm\right)\)
Vậy chu vi \(\Delta ABC\) là \(54cm\).