Cho Δ ABC vuông tại A, có AB = 12cm, BC = 13cm. Gọi M là trung điểm cạnh AB. Tính độ dài đoạn thẳng CM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
A,xét\(\Delta\)vuông ABC(góc A=90 độ):
góc C+gócB=90* (đl trong1 tg vuông)
^C + 60* =90*
^C = 90*-60*
=> ^C =30*.
dựa vào đl góc đối diện với cạnh lớn hơn,có
góc A>góc B>gócC (90>60>30 độ)
=> BC > AC >AB
vậy AB<AC lát nữa mik làm tiếp nha,I'm helping my mom do housework
|-------------/----------------|----------/---------------------|
A M B
Vì M là trung điểm của đoạn thẳng AB nên:
\(\Rightarrow AM=MB=\frac{1}{2}AM\)
\(\Rightarrow AM=MB=\frac{1}{2}.8\)
\(\Rightarrow AM=MB=4\)(cm)
_Học tốt_
Từ giả thiết AB = 12cm và điểm N nằm giữa hai điểm A, B sao cho AN = 2cm
Suy ra: AN + NB = AB
Thay số 2 + NB = 12 nên NB = 10 cm
M là trung điểm của đoạn thẳng BN nên BM = MN = 5cm.
Cũng do MN = 5cm và P là trung điểm của đoạn thẳng MN nên NP = PM = 2,5cm. Từ đó, ta có thể vẽ được hình như sau
* Trên tia NB có NP < NB (do 2,5cm < 10cm) nên điểm P nằm giữa hai điểm N và B.
Do đó: BN = NP + BP
Suy ra BP = BN - NP = 10 - 2,5 = 7,5 cm
a) -△ABC và △HAC có: \(\widehat{BAC}=\widehat{AHC}=90^0\); \(\widehat{C}\) là góc chung.
\(\Rightarrow\)△ABC∼△HAC (g-g)
b)\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\Rightarrow AC^2=BC.CH=13.4=52\Rightarrow AC=\sqrt{52}\left(cm\right)\)
c) \(\widehat{AHE}=90^0-\widehat{AHF}=\widehat{CHF}\).
-△AHE và △CHF có: \(\widehat{AHE}=\widehat{CHF}\); \(\widehat{HAE}=\widehat{HCF}\) (△ABC∼△HAC)
\(\Rightarrow\)△AHE∼△CHF (g-g) \(\Rightarrow\dfrac{AH}{CH}=\dfrac{AE}{CF}\Rightarrow AE.CH=AH.FC\).
d) -Gọi G là giao của AB và HF.
-△GAF và △GHE có: \(\widehat{GAF}=\widehat{GHE}=90^0\); \(\widehat{G}\) là góc chung.
\(\Rightarrow\)△GAF∼△GHE (g-g) \(\Rightarrow\dfrac{GA}{GH}=\dfrac{GF}{GE}\Rightarrow\dfrac{GA}{GF}=\dfrac{GH}{GE}\)
-△GEF và △GHA có: \(\dfrac{GA}{GF}=\dfrac{GH}{GE}\); \(\widehat{G}\) là góc chung.
\(\Rightarrow\)△GEF∼△GHA (c-g-c) \(\Rightarrow\widehat{GFE}=\widehat{GAH}\).
\(\widehat{GAH}=90^0-\widehat{CAH}=\widehat{ACB}\Rightarrow\widehat{GFE}=\widehat{ACB}\).
-△HEF và △ABC có: \(\widehat{EHF}=\widehat{BAC}=90^0;\widehat{HFE}=\widehat{ACB}\).
\(\Rightarrow\)△HEF∼△ABC (g-g) \(\Rightarrow\dfrac{S_{HEF}}{S_{ABC}}=\dfrac{HE}{AB}\Rightarrow S_{HEF}=\dfrac{HE}{AB}.S_{ABC}\)
-Qua H kẻ đg thẳng vuông góc với AB tại E' \(\Rightarrow HE\ge HE'\)
\(\Rightarrow S_{HEF}\ge\dfrac{HE'}{AB}.S_{ABC}\).
-\(S_{HEF}\) có diện tích nhỏ nhất \(\Leftrightarrow E\equiv E'\Leftrightarrow\)E là hình chiếu của H lên AB.
Áp dụng định lí Pi-ta-go trong tam giác ABC vuông tại A :
AB2 + AC2 = BC2
⇒ AC = \(\sqrt{13^2-12^2}\) = 5(cm)
M là trung điểm của AB ⇒ AM = \(\dfrac{1}{2}AB = 6(cm)\)
Áp dung định lí Pi-ta-go trong tam giác AMC vuông tại A :
AM2 + AC2 = CM2
⇒ CM = \(\sqrt{6^2+5^2}\) = \(\sqrt{61}\)(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=13^2-12^2=25\)
\(\Leftrightarrow AC=\sqrt{25}=5\left(cm\right)\)
Ta có: M là trung điểm của AB(gt)
nên \(AM=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACM vuông tại A, ta được:
\(CM^2=AC^2+AM^2\)
\(\Leftrightarrow CM^2=5^2+6^2=61\)
hay \(CM=\sqrt{61}cm\)
Vậy: \(CM=\sqrt{61}cm\)