Cho hình bình hành ABCD , kẻ AE và CF vuông góc với BD . AC cắt BD tại I . Chứng minh: I là trung điểm của EF .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra AE=CF: ED=FB
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có
FB=ED
\(\widehat{KBF}=\widehat{IDE}\)
Do đó: ΔKBF=ΔIDE
Suy ra: KB=ID
Xét tứ giác KBID có
KB//ID
KB=ID
Do đó: KBID là hình bình hành
Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường
a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF và DE=BF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có
KB=ID
\(\widehat{KBF}=\widehat{IDE}\)
Do đó: ΔKBF=ΔIDE
Suy ra: KB=ID
Xét tứ giác BKDI có
BK//ID
BK=ID
Do đó: BKDI là hình bình hành
Suy ra: Hai đường chéo BD và KI cắt nhau tại trung điểm của mỗi đường
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB(Hai cạnh đối của hình bình hành ABCD)
\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)
Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)
Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)
Ta có: ED+EC=DC(E nằm giữa D và C)
FB+FA=AB(F nằm giữa A và B)
mà AB=DC(Hai cạnh đối của hình bình hành ABCD)
và ED=FB(cmt)
nên EC=FA
Xét tứ giác ECFA có
EC=FA(cmt)
EA=CF(cmt)
Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)
1/
Ta có
\(ÁH\perp BD\left(gt\right);CK\perp BD\left(gt\right)\) => AH//CK (1)
Xét tg vuông ADH và tg vuông BCK có
AD//BC (cạnh đối hbh) \(\Rightarrow\widehat{ADH}=\widehat{CBK}\) (góc so le trong)
AD=BC (cạnh đối hbh)
=> tg ADH = tg BCK (Hai tg cuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AH=CK (2)
Từ (1) và (2) => AHCK là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
2/
Ta có
AH//CK (cmt) => AI//CF
AB//CD (cạnh đối hbh) => AF//CI
=> AICF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => AI = CF (cạnh đối hbh)
4/ Xét hbh AHCK có
AC cắt HK tại O' => O'H=O'K (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm HK
Mà O cũng là trung điểm HK
=> \(O\equiv O'\) => A; O; C thẳng hàng
5/
Xét hbh AHCK có
AC cắt HK tại O (cmt) => OA=OC
Xét hbh ABCD có
OA=OC (cmt) => OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Ta có
AICF là hbh (cmt) => FI cắt AC tại trung điểm O của AC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> AC; BD; IF đồng quy
Đầu bài vô lí qua CK kẻ đg thg vuông BD tại F , cắt AC tại K
CK nào???
1: Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF
Ta có: AE\(\perp\)BD
CF\(\perp\)BD
Do đó: AE//CF
Đầu bài vô lí qua CK kẻ đg thg vuông BD tại F , cắt AC tại K
1: Ta có: AE\(\perp\)BD
CF\(\perp\)BD
Do đó: AE//CF
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF
Vì ABCD là hình bình hành
=> + AB = DC
AB // DC => góc ABE = góc FCD ( sole trong )
+ AD= BC
AD // BC
+) Xét \(\Delta AEB\)và \(\Delta CFD\)có :
\(AB=CD\left(cmt\right)\)
\(\widehat{AEB}=\widehat{CFD}=90^o\)(gt )
\(\widehat{ABE}=\widehat{FCD}\)(cmt)
Do đó : tam giác vuông AEB = tam giác vuông CFD ( cạnh huyền - góc nhọn )
\(\Rightarrow AE=FC\)( cặp cạnh tương ứng ) (1)
+) vÌ \(\hept{\begin{cases}AE\perp DB\\FC\perp DB\end{cases}}\)
=> AE // FC (2)
Từ (1) và (2)
=> AECF là hình bình hành ( đpcm )