Cho các số tự nhiên a, b sao cho \(a^2+b^2-a⋮2ab\).CMR : a là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) n là số nguyên
n^2 + 2014 = k^2 (k nguyên)
=> k^2 - n^2 = 2014
=> (k + n)(k - n) = 2014
Ta biết nếu k và n nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.Ở đây tích của chúng là 2014 nên chúng phải cùng chẵn.Nhưng 2014 không chia hết cho 4 nên không thể là tích của 2 số chẵn.
Vậy không có n thuộc Z thỏa mãn ĐK đề bài.
a) ta có (a-b)(a+b)=a^2 -ba+ba-b^2=a^2-b^2
a/ Ta có: `2a = 3b => a/3 = b/2`
Đặt `a/3 = b/2 = k` \(\left(k\ne0\right)\)
`=> a = 3k ; b = 2k`
`=> M =`\(\dfrac{\left(3k\right)^3-2.3k.\left(2k\right)^2+\left(2k\right)^3}{\left(3k\right)^2.2k+3k.\left(2k\right)^2+\left(2k\right)^3}=\dfrac{27k^3-24k^3+8k^3}{18k^3+12k^3+8k^3}=\dfrac{11k^3}{38k^3}=\dfrac{11}{38}\)
Vậy `M = 11/38`.
b/ Giả sử tồn tại số chính phương `a^2` có tổng các số tự nhiên là 20142015
Vì \(20142015⋮3\) nên \(a^2⋮3\)
\(\Rightarrow a^2⋮3^2\)
\(\Rightarrow a^2⋮9\)
Mà \(20142015⋮9̸\Rightarrow a^2⋮9̸\) (vô lí)
`=>` Không tồn tại số chính phương `a^2` nào có tổng các số tự nhiên là 20142015
\(\Rightarrow\) 1 số tự nhiên có tổng các chữ số là `20142015` không phải là số chính phương (đpcm)
2a2 + a = 3b2 + b => 2a2 - 2b2 + a - b = b2 => 2.(a - b).(a + b) + (a - b) = b2
=> (a - b). (2a + 2b + 1) = b2 (1)
Gọi d = ƯCLN (a-b; 2a + 2b + 1)
=> a - b chia hết cho d và 2a + 2b + 1 chia hết cho d
=> b2 = (a - b). (2a + 2b + 1) chia hết cho d2
=> b chia hết cho d
Lại có 2(a - b) - (2a + 2b + 1) chia hết cho d => -4b - 1 chia hết cho d
=> 1 chia hết cho d => d =1 => a - b và 2a + 2b + 1 nguyên tố cùng nhau (2)
(1)(2) => a- b và 2a + 2b + 1 đều là số chính phương
có rùi nè, 4b đó: Cho a+b+c=0.
Tính: 1/(b^2+c^2-a^2)+1/(a^2+c^2-b^2)+1/(a^2+b^2-c^2). đó bài này đó
Điều kiện đề bài ⇒(2c)2=(a+c)(b+c)⇒(2c)2=(a+c)(b+c). Gọi d=gcd(a+c,b+c)d=gcd(a+c,b+c) thì do a−b=p∈Pa−b=p∈P nên d=1d=1hoặc d=pd=p
Nếu d=1d=1 thì a+c=x2,b+c=y2a+c=x2,b+c=y2 ( xy=2cxy=2c)
⇒p=(x−y)(x+y)⇒p=(x−y)(x+y). p=2p=2 thì vô lý. pp lẻ thì dễ thấy x=p+12=a−b+12x=p+12=a−b+12 và y=a−b−12y=a−b−12
⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2 là scp
Nếu d=pd=p thì a+c=pm2,b+c=pn2a+c=pm2,b+c=pn2 ( 2c=pmn2c=pmn)
⇒(m−n)(m+n)=1→m=1,n=0⇒(m−n)(m+n)=1→m=1,n=0 (loại)
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Nếu: a=0 thì hiển nhiên đúng. Tương tự với b=0
Nếu a;b>=1 thì Gọi d=UCLN(a,b)
a=da'; b=db' với (a',b')=1.
ta có: d(a'^2.d+b'^2.d-a') chia hết cho 2d^2.a'.b'
nên: d(a'^2+b'^2)-a' chia hết cho d
do đó: a' chia hết cho d
nên d=1 từ đó ta có:
\(a^2+b^2-a⋮a\text{ nên: }b^2⋮a\left(\text{mà: }\left(a,b\right)=1\right)\text{ nên: }a=1\)
Vậy: a là số chính phương
Tại sao lại suy ra được \(d\left(a'^2+b'^2\right)⋮d\)thế ?