K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

6 tháng 11 2021

= (x3+3x2+3x+1)-(4y)3

=(x+1)3-(4y)3

=(x+1-4y)[(x+1)2+(x+1).4y+16y2 ]

=(x+1-4y)[(x2+2x+1)+(4xy+4y)+16y2]

29 tháng 11 2021

    x3 - x2 + 3x - 27.

= (x3 - 27) - (x2 - 3x).

= (x - 3) (x2 + 3x + 9) - x (x - 3).

= (x - 3) (x2 + 3x + 9 - x).

= (x - 3) (x2 + 2x + 9).

29 tháng 11 2021

x3 - x2 + 3x - 27 = ( x3 - 27 ) - ( x2 - 3x )

= ( x - 3 ) ( x2 + 3x + 9 ) - x ( x - 3 ) 

= ( x - 3 ) ( x2 + 3x + 9 - x )

= ( x - 3 ) ( x2 - 2x + 9 )

* Chúc bạn học tốtok

24 tháng 12 2023

2(x+3)-x3-3x

\(=-x^3-3x+2x+6\)

\(=-x^3-x+6\)

Đa thức này ko phân tích được nha bạn

30 tháng 6 2018

\(=x^5-2x^4+x^3-x^4+2x^3-x^2\)

\(=x^3\left(x^2-2x+1\right)-x^2\left(x^2-2x+1\right)\)

\(=\left(x^2-2x+1\right)\left(x^3-x^2\right)\)

\(=\left(x-1\right)^2x^2\left(x-1\right)=\left(x-1\right)^3x^2\)

30 tháng 6 2018

\(=x^2\left(x^3-1\right)-3x^3\left(x-1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1-3x\right)\)

\(=x^2\left(x-1\right)\left(x^2-2x+1\right)\)

\(=x^2\left(x-1\right)\left(x-1\right)^2\)

\(=x^2\left(x-1\right)^3\)

27 tháng 7 2021

3x(x-1)2-(1-x)3=3x(x-1)2-(1-x)2.(1-x)=3x(x-1)2+(x-1)2​.(1-x)=(x-1)2(3x-1-x)=(2x-1)(x-1)2

8 tháng 8 2018

\(x^3+3x^2+3x+2\)

\(=\left(x+2\right)\left(x^2+x+1\right)\)

8 tháng 8 2018

\(x^3+3x^2+3x+2\)

\(=x^3+2x^2+x^2+2x+x+2\)

\(=x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+x+1\right)\)

8 tháng 8 2018

\(x^3+3x^2+3x+2\)

\(=x^3+2x^2+x^2+2x+x+2\)

\(=x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+x+1\right)\)

8 tháng 8 2018

\(x^3+3x^2 +3x+2\)

\(=x^3+x^2+x+2x^2+2x+2\)

\(=x\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)

\(=\left(x+2\right)\left(x^2+x+1\right)\)

15 tháng 12 2020

\(x^3+3x^2-3x-1=\left(x^3-1\right)+\left(3x^2-3x\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)

\(=\left(x-1\right)\left[\left(x^2+x+1\right)+3x\right]=\left(x-1\right)\left(x^2+4x+1\right)\)