Cho AD // BC và AB // CD. Qua giao điểm M của AC và BD, kẻ một đường thẳng bất kì cắt AD, BC theo thứ tự ở K, E. Chứng minh rằng:
a) AD = BC; b) MA = MC; c) MK = ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAOM và ΔCON có
\(\widehat{MAO}=\widehat{NCO}\)
OA=OC
\(\widehat{AOM}=\widehat{CON}\)
Do đó: ΔAOM=ΔCON
Suy ra: AM=CN
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
a: Xét ΔODA và ΔOKM có
\(\widehat{ODA}=\widehat{OKM}\)(hai góc so le trong, AD//KM)
\(\widehat{DOA}=\widehat{KOM}\)
Do đó: ΔODA đồng dạng với ΔOKM
=>\(\dfrac{OD}{OK}=\dfrac{OA}{OM}\)
=>\(OD\cdot OM=OA\cdot OK\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{5}=\dfrac{DC}{10}\)
=>\(\dfrac{DB}{1}=\dfrac{DC}{2}\)
mà DB+DC=BC=12cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{1}=\dfrac{DC}{2}=\dfrac{DB+DC}{1+2}=\dfrac{12}{3}=4\)
=>\(DB=4\cdot1=4cm;DC=4\cdot2=8cm\)
c: Ta có: EM//CA
=>\(\widehat{AEK}=\widehat{KAD}=\widehat{CAD}\left(1\right)\)
Ta có: EK//AD
=>\(\widehat{EKA}=\widehat{BAD}\)(hai góc đồng vị)(2)
ta có:AD là phân giác của góc BAC
=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)
=>ΔAEK cân tại A
=>AK=AE
Bạn đã học về hình bình hành chưa?