x=2 y=-1/15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
\(\left\{{}\begin{matrix}\left(x-15\right)\left(y+2\right)=xy\\\left(x+15\right)\left(y-1\right)=xy\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}xy+2x-15y-30-xy=0\\xy-x+15y-15-xy=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-15y=30\\-x+15y=15\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-15=30\\3x=45\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=45\\y=4\end{matrix}\right.\)
Vậy HPT có nghiệm (x;y) = (45;4)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=5\\\dfrac{2}{x}+\dfrac{5}{y}=7\end{matrix}\right.\) (ĐK: x,y >0)
⇔\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=25\\\dfrac{2}{x}+\dfrac{5}{y}=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=25\\\dfrac{3}{x}=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=\dfrac{6}{29}\end{matrix}\right.\) (TM)
Vậy HPT có nghiệm (x;y) = (\(\dfrac{1}{6};\dfrac{6}{29}\))
mình chỉ biết câu 1 chứ mình không biết câu 2
đáp án của mình là 2 ,mà mình không chắc cho lắm
1/
Đề \(\Rightarrow z^{15}+x^{15}-\left(y^{15}+z^{15}\right)=2\left(y^{2016}-x^{2016}\right)\)
\(\Rightarrow x^{15}-y^{15}=2\left(y^{2016}-x^{2016}\right)\)
+Nếu \(x=y\text{ thì }VT=0=VP\)
+Nếu \(x>y\text{ thì }VT>0>VP\)
+Nếu \(x
\(1=x+y+xy\le x+y+\frac{\left(x+y\right)^2}{4}=\left(\frac{x+y}{2}+1\right)^2-1\)
\(\Rightarrow\left(\frac{x+y}{2}+1\right)^2\ge2\Rightarrow\frac{x+y}{2}+1\ge\sqrt{2}\Rightarrow x+y\ge2\sqrt{2}-2\)
\(1=x+y+xy\ge2\sqrt{xy}+xy=\left(\sqrt{xy}+1\right)^2-1\)
\(\Rightarrow\left(\sqrt{xy}+1\right)^2\le2\Rightarrow\sqrt{xy}+1\le\sqrt{2}\Rightarrow\sqrt{xy}\le\sqrt{2}-1\)
\(\Rightarrow xy\le3-2\sqrt{2}\)
\(P=\frac{1}{x+y}+\frac{1}{x}+\frac{1}{y}=\frac{x+y+xy}{x+y}+\frac{x+y}{xy}\)
\(=1+\left(\frac{xy}{x+y}+\frac{\left(\sqrt{2}-1\right)^2}{4}.\frac{x+y}{xy}\right)+\frac{1+2\sqrt{2}}{4}.\frac{x+y}{xy}\)
\(\ge1+2\sqrt{\frac{xy}{x+y}.\frac{\left(\sqrt{2}-1\right)^2}{4}\frac{x+y}{xy}}+\frac{1+2\sqrt{2}}{4}.\frac{2\sqrt{2}-2}{3-2\sqrt{2}}=\frac{5+5\sqrt{2}}{2}\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=\sqrt{2}-1\)
( 2 x y + 2/15 ) x 3 = 4/5
( 2 x y + 2/15 ) = 4/5 : 3
( 2 x y + 2/15 ) = 4/15
2 x y = 4/15 - 2/15
2 x y = 2/15
y = 2/15 :2
y = 1/15
(2 x y + 2/15) x 3 = 4/5
2 x y + 2/15) = 4/5 : 3
2 x y + 2/15 = 4/15
2 x y = 4/15 - 2/15
2 x y = 2/15
y = 2/15 : 2
y = 1/15
7/9 x (2 - 1/3 x y) = 14/15
(2 - 1/3 x y) = 14/15 : 7/9
(2 - 1/3 x y) = 6/5
2 - y = 6/5 x 1/3
2 - y = 2/5
y = 2/5 + 2
y = 12/5
4/21 + 5 x y - 8/7 = 1/3
4/21 + 5 x y = 1/3 + 8/7
4/21 + 5 x y = 31/21
5 x y = 31/21 - 4/21
5 x y = 9/7
y = 9/7 : 5
y = 9/35
7/12 x y - 3/12 x y = 5
y x (7/12 - 3/12) = 5
y x 1/3 = 5
y = 5 : 1/3
y = 15
\(\dfrac{8}{9}\) : ( 2 - 3 \(\times\) y) = \(\dfrac{5}{3}\)
2 - 3 \(\times\) y = \(\dfrac{8}{9}\) : \(\dfrac{5}{3}\)
2 - 3 \(\times\) y = \(\dfrac{8}{15}\)
3 \(\times\) y = 2 - \(\dfrac{8}{15}\)
3 \(\times\) y = \(\dfrac{22}{15}\)
y = \(\dfrac{22}{15}\) : 3
y = \(\dfrac{22}{45}\)