Cho ABC vuông tại A, tia phân giác của ABC cắt AC tại D. Trên BC lấy E sao
cho BA = BE.
a) Chứng minh ABD EBD
b) Chứng minh DB AE
c) Kẻ tia Bx BC . Tia Bx cắt AC tại F. So sánh FB và FD
g) d) Giả sử
2
BF
AD Chứng minh AEC BFD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BD chung
góc ABD=góc EBD
BA=BE
=>ΔBAD=ΔBED
=>góc ADB=góc EDB
=>DB là phân giác của góc ADE
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>ED vuông góc BC
=>ED//AH
c: AD=DE
mà DE<DC
nên AD<DC
a: Xét ΔABD và ΔEBD có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
=>ΔBED vuông tại E
c: AD=DE
DE<DC
=>AD<DC
d: AB+EF=BE+EF
mà BE+EF>BF
nên AB+EF>BF
Lời giải:
a. Xét tam giác $ABD$ và $EBD$ có:
$AB=EB$
$BD$ chung
$\widehat{ABD}=\widehat{EBD}$ (do $BD$ là phân giác $\widehat{B}$)
$\Rightarrow \triangle ABD=\triangle EBD$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra:
$AD=DE$
$\widehat{BED}=\widehat{BAD}=90^0$
$\Rightarrow DE\perp BC$
$\Rightarrow \widehat{DEC}=90^0$
Xét tam giác $ADM$ và $EDC$ có:
$AD=ED$ (cmt)
$\widehat{ADM}=\widehat{EDC}$ (đối đỉnh)
$\widehat{DAM}=\widehat{DEC}=90^0$
$\Rightarrow \triangle ADM=\triangle EDC$ (g.c.g)
$\Rightarrow AM=EC$
c.
Từ tam giác bằng nhau phần b suy ra:
$\widehat{M_1}=\widehat{C_1}$
$DM=DC$
Mà $DE=AD$
$\Rightarrow DM+DE=DC+AD$
$\Rightarrow ME=AC$
Xét tam giác $AEM$ và $EAC$ có:
$AM=EC$ (cmt)
$EM=AC$ (cmt)
$\widehat{M_1}=\widehat{C_1}$ (cmt)
$\Rightarrow \triangle AEM=\triangle EAC$ (c.g.c)
$\Rightarrow \widehat{EAM}=\widehat{AEC}$
a)xét tg ABD và tg CBD có:
+ AB=BE(gt)
+ góc ABD = EBD (BD là phân giác)
+BD chung
=>tg ABD= tg EBD(c.gc)
b) vì tg ABD=tgEBD
=> AD=DE và góc BAD = BED (=90 độ)
=> DE ⊥ BC
=> tg DEC có DC là cạnh huyền =>DC>ED mà ED=AD => DC>AD
c)xét tg BFE và tg BCA có:
+ Góc E = A (=90 độ)
+góc B chung
+ BE=BA
=>tg BFE =tg BCA (gcg)
=>BF=BC
=> tg BFC cân tại B
vì S là td FC
=>BS vừa là trung tuyến vừa là đường cao
=>BS⊥FC (1)
tg BFC có: D là giao của 2 đg cao CA và FE
=> D là trực tâm => BD ⊥ FC (2)
từ 1 và 2 => B,D,S thẳng hàng
Sửa đề: AB = BE (không phải AB = AE)
Gởi hình vẽ trước, đi công việc, tí sửa sau
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
c: Xét ΔDEC vuông tại E và ΔDAM vuông tại A có
DE=DA
EC=AM
Do đó: ΔDEC=ΔDAM
Suy ra: DC=DM
?????????????????