x-2018/2+x-2020/4=x-2024/8+x-2030/14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|\right):10=\left(1-\frac{1}{2}\right)....\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\Leftrightarrow\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.|x-2|=1\Leftrightarrow|x-2|.\frac{2}{3}=1\Leftrightarrow|x-2|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
\(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\)
\(\Leftrightarrow\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.\left|x-2\right|=1\)
\(\Leftrightarrow\left|x-2\right|.\frac{2}{3}=1\Leftrightarrow\left|x-2\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
\(\dfrac{x+1}{2020}+\dfrac{x-1}{2018}=\dfrac{x+5}{2024}+\dfrac{x-5}{2014}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2020}-1\right)+\left(\dfrac{x-1}{2018}-1\right)-\left(\dfrac{x+5}{2024}-1\right)-\left(\dfrac{x-5}{2014}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-2019}{2020}+\dfrac{x-2019}{2018}-\dfrac{x-2019}{2024}-\dfrac{x-2019}{2014}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\dfrac{1}{2020}+\dfrac{1}{2018}-\dfrac{1}{2024}-\dfrac{1}{2014}\right)=0\)
\(\Leftrightarrow x-2019=0\\ \Leftrightarrow x=2019\)
=2000 x 2010 x 2020 x 2030 x 2040/2010 x 2020 x 2030 x 2040 x 2050
=2000/2050 = 40/41
Tí cậu gạch 2010;2020;2030;2040;2050 cả trên cả dưới nhé. Tớ ko biết ấn vào đâu để gạch
2000/2010 x 2010/2000 x 2020/2030 x 2030/2040 x 2040/50
=1/1 x 1/1 x 202/203
=202/203
Ta có :\(\frac{x-2018}{2}+\frac{x-2020}{4}=\frac{x-2024}{8}+\frac{x-2030}{14}\)
=> \(\left(\frac{x-2018}{2}+1\right)+\left(\frac{x-2020}{4}+1\right)=\left(\frac{x-2024}{8}+1\right)+\left(\frac{x-2030}{14}+1\right)\)
=> \(\frac{x-2016}{2}+\frac{x-2016}{4}=\frac{x-2016}{8}+\frac{x-2016}{14}\)
=> \(\frac{x-2016}{2}+\frac{x-2016}{4}-\frac{x-2016}{8}-\frac{x-2016}{14}=0\)
=> \(\left(x-2016\right)\left(\frac{1}{2}+\frac{1}{4}-\frac{1}{8}-\frac{1}{14}\right)=0\)
=> x - 2016 = 0 (Vì \(\frac{1}{2}+\frac{1}{4}-\frac{1}{8}-\frac{1}{14}\ne0\))
=> x = 2016
Vậy x = 2016
ta có
\(\frac{x-2018}{2}+1+\frac{x-2020}{4}+1=\frac{x-2024}{8}+1+\frac{x-2030}{14}+1\)
\(\Leftrightarrow\frac{x-2016}{2}+\frac{x-2016}{4}=\frac{x-2016}{8}+\frac{x-2016}{14}\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2}+\frac{1}{4}-\frac{1}{8}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x=2016\)