n2 - 2n - 22 ⋮ n + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2-2n-22\) là bội \(n+3\)
\(\Rightarrow n^2-2n-22⋮n+3\)
\(\Rightarrow n^2+3n-5n-22⋮n+3\)
\(\Rightarrow n\left(n+3\right)-5n-22⋮n+3\)
Ta có: \(n\left(n+3\right)⋮n+3\) nên để \(n^2-2n-22⋮n+3\)
thì \(-5n-22⋮n-3\)\(\Rightarrow-5\left(n-3\right)-7⋮n-3\)
Mà \(-5\left(n-3\right)⋮n-3\) suy ra \(-7⋮n-3\)
\(\Rightarrow n-3\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow n\in\left\{4;2;10;-4\right\}\)
n2−2n−22 là bội �+3n+3
⇒�2−2�−22⋮�+3⇒n2−2n−22⋮n+3
⇒�2+3�−5�−22⋮�+3⇒n2+3n−5n−22⋮n+3
⇒�(�+3)−5�−22⋮�+3⇒n(n+3)−5n−22⋮n+3
Ta có: �(�+3)⋮�+3n(n+3)⋮n+3 nên để �2−2�−22⋮�+3n2−2n−22⋮n+3
thì −5�−22⋮�−3−5n−22⋮n−3⇒−5(�−3)−7⋮�−3⇒−5(n−3)−7⋮n−3
Mà −5(�−3)⋮�−3−5(n−3)⋮n−3 suy ra −7⋮�−3−7⋮n−3
⇒�−3∈Ư(−7)={1;−1;7;−7}⇒n−3∈Ư(−7)={1;−1;7;−7}
⇒�∈{4;2;10;−4}⇒n∈{4;2;10;−4}
Bài 1 :
A = 12 + 22 + 32 +....+n2
A = 12 + 2.(1+1) + 3.(2 +1) + 4.( 3 +1) +.....+n(n-1 + 1)
A = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 +.....+ n.(n-1) + n
A = ( 1 + 2 + 3 + 4 +....+n) + ( 1.2 + 2.3 + 3.4 +....+(n-1).n
A = (n+1).{(n-1):n+1)/2 +1/3.[1.2.3 +2.3.3 +.....+(n-1)n.3]
A = (n+1).n/2+1/3.[1.2.3 +2.3.(4-1)+ ...+(n-1).n [(n+1) - (n -2)]
A = (n+1)n/2+1/3.( 1.2.3 + 2.3.4 -1.2.3 +..+ (n-1)n(n+1)- (n-2)(n-1)n)
A =(n+1)n/2 + 1/3.(n-1)n(n+1)
A = n(n+1)[1/2 + 1/3 .(n-1)]
A = n.(n+1) \(\dfrac{3+2n-2}{6}\)
A= n.(n+1)(2n+1)/6
Bài 2 :
a, (x+1) +(x+2) + (x+3)+...+(x+10) = 5070
(x+10 +x+1).{( x+10 - x -1): 1 +1):2 = 5070
(2x + 11)10 : 2 = 5070
( 2x + 11)5 = 5070
2x+ 11 = 5070:5
2x = 1014 - 11
2x = 1003
x = 1003 :2
x = 501,5
b, 1 + 2 + 3 +...+x = 820
( x + 1)[ (x-1):1 +1] : 2 = 820
(x +1).x = 820 x 2
(x +1).x = 1640
(x +1) .x = 40 x 41
x = 40
9: \(\Leftrightarrow n^2+n+3n+2+1⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
10: \(\Leftrightarrow n^2+4n+4-2⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{-1;-3;0;-4\right\}\)
11: \(\Leftrightarrow n^2-2n+1+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;0;3;-1\right\}\)
a: Ta có: \(3n+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
1. Áp dụng công thức tổng cấp số nhân:
\(S_n=u_1.\dfrac{q^n-1}{q-1}=2.\dfrac{2^n-1}{2-1}=2.\left(2^n-1\right)=2^{n+1}-2\)
2. \(\left\{{}\begin{matrix}u_2+u_5=12\\u_4+u_8=22\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(u_1+d\right)+\left(u_1+4d\right)=12\\\left(u_1+3d\right)+\left(u_1+7d\right)=22\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u_1+5d=12\\2u_1+10d=22\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=1\\d=2\end{matrix}\right.\)
\(\Rightarrow u_n=u_1+\left(n-1\right)d=1+\left(n-1\right)2=2n-1\)
\(\Rightarrow S_n=\dfrac{n\left(u_1+u_n\right)}{2}=\dfrac{n\left(1+2n-1\right)}{2}=n^2\)
3. \(\left\{{}\begin{matrix}u_1+u_2=4\\u_4+u_1=28\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u_1+u_1q=4\\u_1q^3+u_1=28\end{matrix}\right.\)
\(\Rightarrow\dfrac{q^3+1}{q+1}=\dfrac{28}{4}\Rightarrow q^2-q+1=7\)
\(\Rightarrow q^2-q-6=0\Rightarrow\left[{}\begin{matrix}q=3\\q=-2\end{matrix}\right.\)
Ta có: \(n^2-2n-22⋮n+3\)
\(\Leftrightarrow n^2+3n-5n-15-7⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)-5\left(n+3\right)-7⋮n+3\)
\(\Leftrightarrow\left(n+3\right)\left(n-5\right)-7⋮n+3\)
mà \(\left(n+3\right)\left(n-5\right)⋮n+3\)
nên \(-7⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(-7\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-2;-4;4;-10\right\}\)
Vậy: \(n\in\left\{-2;-4;4;-10\right\}\)