K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

100 đôi đũa = 200 chiếc đũa (easy)

9 tháng 2 2021

x 0 thôi

6 tháng 5 2017

Ta có

200-(3+2/3+...+2/100)

=200-(3+2(1/3+...+1/100)

=200-(3+2 (1-2/3+1-3/4+...+1-99/100))

=200-(3+2(98-(2/3+3/4+...+99/100)))

=200-3-196-(2/3+3/4+...+99/100)

=1-(2/3+3/4+...+99/100)

Thay:1-(2/3+3/4+...+99/100)/2/3+3/4+......+99/100=1/(1/2)=2

Ta có : 

         1002 > 99 . 100

         1012 > 100 . 101

            ..............

         2002 > 199. 200

=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)

=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\)    \(\left(1\right)\)

Tương tự ta có :

    A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)

=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)

=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)

=>  A > \(\frac{1}{200}\)                   \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)Ta có : 

             \(\frac{1}{200}< A< \frac{1}{99}\)

=> ĐPCM

9 tháng 8 2018

x^200+x^100+1=x^100*(x^2+1)+1
x^4+x^2+1=x^2*(x^2+1)+1
mà x^100chia hết cho x^2
x^2+1chia hết cho x^2+1
1 chia hết cho1
suy ra x^100*(x^2+1)+1 chia hết cho x^2*(x^2+1)+1 hay x^200+x^100+1 chia hết cho x^4+x^2+1

2 tháng 9 2018

 \(A=x^{200}+x^{100}+1\)

    \(=x^{200}-x^2+x^{100}-x^4+x^4+x^2+1\)

    \(=x^2\left(x^{198}-1\right)+x^4\left(x^{96}-1\right)+\left(x^4+x^2+1\right)\)

    \(=x^2\left(x^{^6}-1\right).A+x^4\left(x^6-1\right).B+x^4+x^2+1\)

\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)=\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)\)

Vậy \(A⋮\left(x^4+x^2+1\right)\)