K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2021

Ta có : \(x^2+2y+1=0;y^2+2z+1=0;z^2+2x+1=0\)

\(\Rightarrow x^2+2y+1=y^2+2z+1=z^2+2x+1\)

\(\Rightarrow x^2+2y+1-y^2-2z-1-z^2-2x-1=0\)

\(\Rightarrow\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(x-1\right)^2-\left(y-1\right)^2-\left(z+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=0\\y-1=0\\z+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\\z=-1\end{cases}}\)

Thay \(x=1;y=1;z=-1\)vào A ta có :

\(A=1^{2015}+1^{2016}+\left(-1\right)^{2017}=1+1-1=1\)

Vậy A = 1

 

Từ \(\hept{\begin{cases}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{cases}}\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Rightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\left(1\right)\)

Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\\\left(z+1\right)^2\ge0\forall z\end{cases}\left(2\right)}\)

Từ \(\left(1\right)\)và \(\left(2\right)\):

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+1=0\\y+1=0\\z+1=0\end{cases}}\)

\(\Rightarrow x=y=z=-1\)

\(\Rightarrow A=\left(-1\right)^{2015}+\left(-1\right)^{2016}+\left(-1\right)^{2017}=-1+1-1=-1\)

Vậy \(A=-1\)

b: 5x^2+5y^2+8xy-2x+2y+2=0

=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0

=>(x-1)^2+(y+1)^2+(2x+2y)^2=0

=>x=1 và y=-1

M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1

3 tháng 7 2015

từ đề bài => \(x^2+2y+1+y^2+2z+1+z^2+2x+1=0\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)=> x=-1; y=-1 và z=-1

A=-1^2016+ -1^2016+ -1^2016=1+1+1=3

21 tháng 10 2016

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0+0+0\)

\(\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

\(\left(x+1\right)^2\ge0\)

\(\left(y+1\right)^2\ge0\)

\(\left(z+1\right)^2\ge0\)

\(\Rightarrow x+1=y+1=z+1=0\)

\(\Rightarrow x=y=z=-1\)

\(\Rightarrow P=1+1+1=3\)

16 tháng 10 2019

ta có x2+2y+1+y2+2z+1+z2+2x+1=0

=>(x2+2x+1)+(y2+2y+1)+(z2+2z+1)=0

=>(x+1)2+(y+1)2+(z+1)2=0

Vì (x+1)2> hoặc = 0

.......

=> x=-1,y=-1,z=-1

sau đó thay vào nha

11 tháng 1 2018

cộng 3 vế lại cùng 1 lúc ta sẽ có (x+1)2 +(y+1)2+(z+1)2 = 0.

dấu bằng xảy ra khi cả 3 biểu thức bằng 0, suy ra x=y=z= -1

thế vào A thì A= -3