K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

Giải:

Hình bạn tự vẽ nhé.

a) Ta có: tam giác ABC cân tại A (gt)

=> AB = AC ; góc ABC = góc ACB (định lí)

Lại có: góc ABD là góc ngoài của tam giác ABC tại đỉnh B và góc ACE là góc ngoài của tam giác ABC tại đỉnh C

=> Góc ABD = góc BAC + góc ACB 

     Góc ACE = góc BAC + góc ABC

Mà góc ACB = góc ABC (chứng minh trên)

=> Góc ABD = góc ACE   (đpcm)

b) Xét tam giác ABD và tam giác ACE có:

AB = AC (chứng minh trên)

Góc ABD = góc ACE (chứng minh trên)

BD = CE (gt)

=> Tam giác ABD = tam giác ACE   (đpcm)

c) Ta có: tam giác ABD = tam giác ACE (chứng minh trên)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE cân tại A  (dấu hiệu nhận biết)   (đpcm)

d) Ta có: BH _|_ AD tại H (gt) => Góc AHB = 90o

              CK _|_ AE tại K (gt) => Góc AKC = 90o

=> Góc AHB = góc AKC = 90o

Lại có: góc BAD = góc CAE (vì tam giác ABD = tam giác ACE)

=> Góc BAH = góc CAE

Xét tam giác ABH vào tam giác ACK có:

Góc AHB = góc AKC = 90o (chứng minh trên)

Góc BAH = góc CAE (chứng minh trên)

AB = AC (chứng minh trên)

=> Tam giác ABH = tam giác ACE (cạnh huyền - góc nhọn)

=> Góc ABH = góc ACE (2 góc tương ứng)

Mà góc ABH + góc ABC + góc CBI = góc ACK + góc ACB + góc BCI = 180o

=> Góc CBI = góc BCI (vì góc ABH = góc ACE, góc ABC = góc ACB)

=> Tam giác BCI cân tại I (dấu hiệu nhận biết)   (đpcm)

30 tháng 12 2023

a: Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABD}=\widehat{ACE}\)

b: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

=>AD=AE

=>ΔADE cân tại A

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

DO đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

Ta có: DE=DB+BC+CE

nên DE=AB+BC+AC=CABC

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-80^0}{2}=50^0\)

b:\(\widehat{ABD}+\widehat{ABC}=180^0\)

\(\widehat{ACE}+\widehat{ACB}=180^0\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABD}=\widehat{ACE}\)

c: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

8 tháng 1 2022

cảm ơn bn ;-;

 

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)

Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)

c) Ta có: ΔHBD=ΔKCE(cmt)

nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

20 tháng 2 2021

Chúc học tốt

11 tháng 1 2022

a, Ta có : ΔABC có AB = AC

⇒ ΔABC là tam giác cân

⇒ ∠B  = ∠C = 180 - ∠A/2

Xét ΔADC và ΔAEB có :

DC = BE ( DB+BC = EC+CB )

∠ACD = ∠ABE ( chứng minh trên )

AC = AB

⇒ ΔADC = ΔAEB (c.g.c)

⇒ AD = AE ( 2 cạnh tương ứng )

b, Ta có : ∠ABD + ∠ABC = 180 ( 2 góc kề bù )

                ∠ACB + ∠ACE = 180 ( 2 góc kề bù )

Mà ∠ABC = ∠ACB

⇒ ∠ABD = ∠ACE

Xét ΔABD và ΔACE có :

AB = AD

∠ABD = ∠ACE

BD = CE

⇒ ΔABD = ΔACE (c.g.c)

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE

hay ΔADE cân tại A

Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A