K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(x^2+2xy+x+y^2+4y=0\)

\(\Leftrightarrow\left(x+y\right)^2+x+4y=0\)

\(\Leftrightarrow\left(x+y\right)^2=-\left(x+4y\right)\left(1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=-\left(x+4y\right)\left(2\right)\\x+y=x+4y\left(3\right)\end{cases}}\)

  • Từ \(\left(2\right)\)\(\Leftrightarrow2x=-5y\)

\(\Leftrightarrow\frac{x}{-5}=\frac{y}{2}\)

Đặt \(\frac{x}{-5}=\frac{y}{2}=k\left(k\inℤ\right)\)

Vì \(\left(x+y\right)^2\ge0\)nên từ \(\left(1\right)\):

\(\Rightarrow-\left(x+4y\right)\ge0\)

\(\Rightarrow x+4y\le0\)

\(\Rightarrow x\le-4y\left(4\right)\)

Khi đó : \(\hept{\begin{cases}x=-5k\\y=2k\end{cases}}\)

\(\Rightarrow\left(4\right)\Leftrightarrow-5k\le-8k\)

\(\Rightarrow3k\le0\)

\(\Rightarrow k\le0\)

  • Từ \(\left(3\right)\)\(\Leftrightarrow3y=0\)

\(\Leftrightarrow y=0\)

Khi đó, PT tương đương với : \(x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy tập nghiệm (x;y) của PT là : \(S=\left\{\left(0;0\right);\left(0;-1\right);\left(-5k;2k\right)\right\}\)\(\left(k\inℤ,k\le0\right)\)

16 tháng 8 2023

bạn ơi hình như đề bạn viết nó có sai sai sao ý =(

20 tháng 3 2020

Câu hỏi của sjfdksfdkjlsjlfkdjdkfsl - Toán lớp 7 - Học toán với OnlineMath

25 tháng 7 2018

a/

\(x\left(3-y\right)+4y=15\Rightarrow x=\frac{15-4y}{3-y}=\frac{12-4y+3}{3-y}=\frac{4\left(3-y\right)+3}{3-y}=4+\frac{3}{3-y}\)(*)

x nguyên khi 3 chia hết cho 3-y => 3-y={-1; -3; 1; 3} => y={4; 6; 2; 0} Thay các giá trị của y vào (*)

=> x={1; 3; 7; 5}

b/

\(\Rightarrow x\left(x-2y\right)+\left(x-2y\right)=\left(x-2y\right)\left(x+1\right)=11\)

Ta nhận thấy nếu x chẵn thì x-2y chẵn => tích chẵn

Nếu x lẻ thì x+1 chẵn => tích chẵn

Đề bài ra tích là 11 lẻ

=>KL: không có giá trị nguyên nào của x; y thỏa mãn đề bài

2 tháng 9 2015

a,  (3x2+1)2+2xy+y2+1=0

    (3x2+1)2+(y+1)2=0  Vì (3x2+1)2 >=0 ; (y+1)>=0 với mọi x,ý

=>3x2+1=0 => 3x2=1  =>  x2=1/3  => x=căn 1/3

   y+1=0 =>    y=-1

b,  x2+2xy+4y2+4y+y2+1=0

    (x2+2xy+y2) + (4y2+4y+1)=0

  (x+y)2 + (2y+1)2=0  Vì (x+y)2 >=0 ; (2y+1)2 >=0 vói mọi x,y

=> 2y+1=0  => y=-1/2

x+y=0  => x-1/2=0  => x=1/2

25 tháng 2 2018

x2+2xy+x+y2+4y=0

x[x+2y+1]y[4+y]=0

x=0

y=0

y=-4

x=-1

y=-2

25 tháng 6 2023

a, (3 - \(x\))(4y + 1) = 20

   Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}

Lập bảng ta có:

\(3-x\) -20 -10 -5 -4 -2 -1 1 2 4 5 10 20
\(x\) 23  13 8 7 5 4 2 1 -1 -2 -7 -17
4\(y\) + 1 -1 -2 -4 -5 -10 -20 20 10 5 4 2 1
\(y\) -1/2 -3/4 -5/4 -6/4 -11/4 -21/4 19/4 9/4 1 3/4 1/4 0

Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) =(-1; 1); (-17; 0)

 

 

25 tháng 6 2023

b, \(x\left(y+2\right)\)+ 2\(y\) = 6

    \(x\) = \(\dfrac{6-2y}{y+2}\)

\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2

⇒ 10 ⋮ \(y\) + 2

Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}

Lập bảng ta có:

\(y+2\) -10 -5 -2 -1 1 2 5 10
\(y\) -12 -7 -4 -3 -1 0 3 8
\(x=\) \(\dfrac{6-2y}{y+2}\) -3 -4 -7 -12 8 3 0 -1

 Theo bảng trên ta có các cặp \(x;y\)

 nguyên thỏa mãn đề bài lần lượt là:

(\(x;y\)    ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)