K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2021

\(ĐK:x\inℝ\)

\(\sqrt[3]{2x+3}+1=x^3+3x^2+2x\Leftrightarrow\sqrt[3]{2x+3}=x^3+3x^2+2x-1\)\(\Leftrightarrow2x+3=\left(x^3+3x^2+2x-1\right)^3\)\(\Leftrightarrow\left(x+2\right)\left(x^2+x-1\right)\left(x^6+6x^5+14x^4+14x^3+4x^2-x+2\right)=0\)

Dễ dàng kiểm tra \(x^6+6x^5+14x^4+14x^3+4x^2-x+2\)không thể phân tích thành nhân tử với các hệ số nguyên nên không có nghiệm nguyên và hữu tỉ

\(\Rightarrow x\in\left\{-2;\frac{\sqrt{5}-1}{2};\frac{-1-\sqrt{5}}{2}\right\}\)

Thử lại ta thấy ba giá trị trên đều thỏa mãn phương trình

Vậy tập nghiệm của phương trình \(S=\left\{\frac{\pm\sqrt{5}-1}{2};-2\right\}\)

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.

4 tháng 4 2021

dạ vâng,em cx không bt có sai ko do đây là đề của thầy em đưa,chắc cx có sai sót mong thầy bỏ qua

5 tháng 4 2021

undefined

ĐK \(\hept{\begin{cases}x\ge1\\\frac{-1-\sqrt{3}}{2}\le x\le\frac{-1+\sqrt{3}}{2}\end{cases}}\)

\(PT\Leftrightarrow2x^3-x^2-3x-1+\sqrt{2x^3-3x+1}-\sqrt[3]{x^2+2}=0\)

Đặt \(\sqrt{2x^3-3x+1}=a,\sqrt[3]{x^2+2}=b\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a^2-b^3+a-b=0\)

\(\Rightarrow a=b=1\)

Tính ra

8 tháng 3 2020

Bạn giải thích cho mình ba dòng cuối đi

18 tháng 6 2019

\(2x^3-x^2+\sqrt[3]{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}.\)

\(\Leftrightarrow\left(2x^3-3x+1\right)-\left(x^2+2\right)+\sqrt[3]{2x^2-3x+1}-\sqrt[3]{x^2+2}=0\)(*)

Đặt \(\sqrt[3]{2x^3-3x+1}=a\Rightarrow2x^3-3x+1=a^3\)\(\sqrt[3]{x^2+2}=b\Rightarrow b^3=x^2+2\)

Khi đó: (*) \(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Rightarrow a-b=0\)( Vì: \(a^2+ab+b^2+1=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+1>0\))

\(\Leftrightarrow a=b\)hay \(\sqrt[3]{2x^3-3x+1}=\sqrt[3]{x^2+2}\)

\(\Leftrightarrow2x^3-3x+1=x^2+2\Leftrightarrow\left(2x^3+x^2\right)-\left(2x^2+x\right)-\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2-x-1\right)=0\Leftrightarrow\orbr{\begin{cases}2x+1=0\left(1\right)\\x^2-x-1=0\left(2\right)\end{cases}}\)

Giải (1)ta được \(x=-\frac{1}{2}\)

Giải (2) ta có: \(x^2-x-1=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\x-\frac{1}{2}=-\frac{\sqrt{5}}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

Vậy tập nghiệm của phương trình đã cho là: \(S=\left\{-\frac{1}{2};\frac{\sqrt{5}+1}{2};\frac{-\sqrt{5}+1}{2}\right\}.\)

NV
16 tháng 3 2022

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-3\ge0\\2x^2-3x+1\ge0\\x^2+2x-3\le2x^2-3x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le\dfrac{1}{2}\end{matrix}\right.\\x^2-5x+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\\\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x\le-3\\x\ge4\end{matrix}\right.\)

NV
11 tháng 8 2021

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x^2+3x+1}=a\\\sqrt[3]{5x+1}=b\end{matrix}\right.\)

\(\Rightarrow a+a^3-b^3=b\)

\(\Leftrightarrow a-b+\left(a-b\right)\left(a^2+ab+b^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt[3]{x^2+3x+1}=\sqrt[3]{5x+1}\)

\(\Leftrightarrow x^2+3x+1=5x+1\)

\(\Leftrightarrow...\)