Một số vừa chia hết cho 9, vừa chia hết cho 5 gồm 4 chữ số. Chữ số hàng chục bằng 2/3 chữ số hàng trăm. Chữ số hàng trăm = 2 lần chữ số hàng nghìn. Tìm số đó. ( Trình bày bài giải nhé )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em ơi đề bài phải là : 1 số tự nhiên gồm 4 chữ số chia hết cho 9 và 5 .
còn đoạn sau thì để dùng rồi
giá trị của số đó không thay đổi khi đổi chỗ chữ số hàng nghìn cho chữ số hàng chục,chữ số hàng trăm hàng trăm cho chữ số hàng đơn vị => chữ số hàng nghìn = hàng chục , hàng trăm = hàng đơn vị . gọi số cần tìm là abab trong đó a+b+a+b= 26 => a.2 phải = 16 ( 16=8.2) và b.2=10(10=5.2) tổng cộng là 26 , ta lấy 16:2 , 10:2 sẽ tìm ra đc số lẻ đó
Do giá trị của số đó không thay đổi khi đổi chữ số hàng nghìn cho chữ số hàng chục, chữ số hàng trăm cho chữ số hàng đơn vị nên ta có chữ số hàng nghìn bằng chữ số hàng chục và chữ số hàng trăm bằng chữ số hàng đơn vị.
Gọi số cần tìm là \(\overline{abab}\) (a, b là các chữ số và a khác 0)
Do tổng các chữ số bằng 26 nên a + b = 13
Do tích các chữ số là số tròn chục nên ta có a hoặc b phải bằng 5, chữ số còn lại chia hết cho 2.
Vậy thì chữ số còn lại là: 13 - 5 = 8.
Tóm lại ta tìm được hai số thỏa mãn là: 5858 hoặc 8585.
Mình thử làm bạn xem có đúng không nhé!
Gọi số cần tìm là abc. Ta có:
b:c=2(dư 2) => b= c x 2 + 2
=> c phải lớn hơn 2 và nhỏ hơn 4 => c=3
=> b=3 x 2 +2 = 8
=> a= 8-3 = 5
=> số cần tìm là 583
Gọi số đó là abcd, ta có:
Để abcd chia hết cho 5 thì d = 0 hoặc d = 5.
* TH1: d = 0
=> abc0 chia hết cho 9 => a + b + c chia hết cho 9 => a + b + c \(\in\) tập hợp gồm các phần tử 9 ; 18 ; 27.
+) a + b + c = 9 => \(2b+b+\frac{2}{3}b=9\)
=> \(\frac{11}{3}b=9\)=> b = 2, ( 45) ( loại)
+) a + b + c = 18 => b = \(\frac{54}{11}\) ( loại)
+) Tương tự.
Vậy số đó không tồn tại với d = 0.
TH2: d = 5.
=> abc5 chia hết cho 9 => a + b + c + 5 chia hết cho 9 => a + b + c + 5 \(\in\) tập hợp gồm các phần tử 9 ; 18 ; 27; 36.
Đến đây bạn thử cả 4 trường hợp , tìm được 3645.
Tự kết luận nhé!
Chúc bạn học tốt!