K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

Ta có: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)=24\)

\(\Leftrightarrow\left[\left(x^2+5x\right)^2+4\left(x^2+5x\right)\right]-\left[6\left(x^2+5x\right)+24\right]=0\)

\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+4\right)-6\left(x^2+5x+4\right)=0\)

\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)\left(x+1\right)\left(x+4\right)=0\)

\(\Rightarrow x\in\left\{-6;-4;-1;1\right\}\)

4 tháng 2 2021

\(\left(x^2+5x\right)^2-2\left(x^2+5x\right)=24\)

\(\Leftrightarrow\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

Đặt: \(x^2+5x=t\)

\(\Rightarrow t^2-2t-24=0\)

\(\Leftrightarrow t^2+4t-6t-24=0\)

\(\Leftrightarrow t\left(t+4\right)-6\left(t+4\right)=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}t=-4\\t=6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2+5x=-4\\x^2+5x=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+5x+4=0\\x^2+5x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1;x=-4\\x=1;x=-6\end{cases}}}\)

Vậy: \(S=\left\{-1;-4;1;-6\right\}\)

[Lớp 8]Bài 1. Giải phương trình sau đây:a) \(7x+1=21;\)b) \(\left(4x-10\right)\left(24+5x\right)=0;\)c) \(\left|x-2\right|=2x-3;\)d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\) Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\) Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\) Bài 4. Giải bài toán bằng cách lập phương...
Đọc tiếp

undefined

[Lớp 8]

Bài 1. Giải phương trình sau đây:

a) \(7x+1=21;\)

b) \(\left(4x-10\right)\left(24+5x\right)=0;\)

c) \(\left|x-2\right|=2x-3;\)

d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)

 

Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:

                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)

 

Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)

 

Bài 4. Giải bài toán bằng cách lập phương trình:

Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. 

Tính quãng đường AB.

 

Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.

a) Chứng minh: ΔHAC đồng dạng với ΔABC;

b) Chứng minh AH2=AD.AB;

c) Chứng minh AD.AB=AE.AC;

d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)

9
26 tháng 3 2021

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

3 tháng 5 2019

a, Đặt \(x^2-5x=a\)

\(\Rightarrow\)\(a^2+10a+24=0\)

\(\Rightarrow a^2+4a+6a+24=0\)

\(\Rightarrow\left(a+4\right)\left(a+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a+4=0\\a+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2-5x+4=0\left(1\right)\\x^2-5x+6=0\left(2\right)\end{cases}}}\)

Giải pt (1) ta có : \(x^2-5x+4=0\)

\(\Rightarrow x^2-4x-x+4=0\)

\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

Giải pt (2) ta có : \(x^2-5x+6=0\)

\(\Rightarrow x^2-2x-3x+6=0\)

\(\Rightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

Vậy \(S=\left\{1;2;3;4\right\}\)

3 tháng 5 2019

\(x^4-30x^2+31x-30=0\)

\(\Rightarrow x^4-30x^2+x+30x-30=0\)

\(\Rightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)

\(\Rightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)\)

\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)

\(\Rightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

Mà \(x^2-x+1>0\)với \(\forall\)\(x\)

\(\Rightarrow x^2+x-30=0\)

\(\Rightarrow x^2-5x+6x-30=0\)

\(\Rightarrow x\left(x-5\right)+6\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)

Vậy \(S=\left\{5;-6\right\}\)

23 tháng 10 2016

Đặt \(a=2x^2+x-2014\) , \(b=x^2-5x-2013\)

thì \(a^2+4b^2=4ab\Leftrightarrow a^2-4ab+4b^2=0\Leftrightarrow\left(a-2b\right)^2=0\)

Thay vào được \(\left[\left(2x^2+x-2014\right)-2\left(x^2-5x-2013\right)\right]^2=0\)

\(\Leftrightarrow11x+2012=0\Leftrightarrow x=-\frac{2012}{11}\)

(x2+2+5x-4)=4(x2+2)(5x-4)

Đặt x2+2=a,5x-4=b

=>(a+b)2=4ab

=> a2-2ab+b2=0

=> (a-b)2=0

=> a=b

=> x2+2=5x-4

=> x2-5x+6=0

=> (x-2)(x-3)=0

=>\(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

26 tháng 7 2018

Đặt 2x^2 + x +2013 = a, x^2-5x+2012 = b

Ta có: a^2 + 4b^2 = 4ab

          a^2 - 4ab + 4b^2 = 0

          (a-2b)^2 = 0

Do đó: a = 2b

Hay: 2x^2 + x -2013 = 2(x^2 -5x -2012)     

        2x^2 + x -2013 = 2x^2 -10x -4024

        x-2013 = -10x -4024

        x+10x = -4024+2013

        11x = -2011

         x = -2011/11

Bạn hỏi nhiều câu hay đấy. Chúc bạn học tốt.   

1 tháng 9 2018

a) ta có : \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2+4\left(x^2-5x\right)+6\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x+4\right)+6\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-2x-3x+6\right)\left(x^2-x-4x+4\right)=0\)

\(\Leftrightarrow\left(x\left(x-2\right)-3\left(x+2\right)\right)\left(x\left(x-1\right)-4\left(x-1\right)\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\\x=4\end{matrix}\right.\) vậy \(x=1;x=2;x=3;x=4\)

b) ta có : \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x+1\right)^2+\left(x^2+x+1\right)-12=0\)

\(\Leftrightarrow\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-3\left(x^2+x+1\right)-12=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+1+4\right)-3\left(x^2+x+1+4\right)=0\)

\(\Leftrightarrow\left(x^2+x+5\right)\left(x^2+x+1-3\right)=0\)

ta có : \(x^2+x+5>0\forall x\)

\(\Rightarrow pt\Leftrightarrow x^2+x-2=0\Leftrightarrow x^2-x+2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) vậy \(x=1;x=-2\)