CÁC BẠN GIÚP MÌNH NHÉ !
Cho p là số nguyên tố lớn hơn 3 , chứng tỏ rằng số A = ( p -1 ) x (p + 2017 ) luôn chia hết cho 24 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(n^2 - 1 = (n-1)(n+1)\)
\(n \) là nguyên tố lớn hơn \(3 \implies n-1;n+1\) là hai số chẵn liên tiếp
\(=> (n-1)(n+1) \) chia hết cho \(8\) \((1)\)
Vì \(n \) là nguyên tố lớn hơn 3 nên ta có : \(n = 3k +1 ; 3k +2\) \((2)\)
Với \(n= 3k + 1\)
\(=> (n-1)(n+1) = (3k+1-1)(n+1) = 3k(n+1) \) chia hết cho 3
Với \(n = 3k+2\)
\(=> (n-1)(n+1) = (n-1)(3k+2+1) = (n-1)(k+1)3 \) chi hết cho 3
- Từ \((1) \),\((2)\) ta thấy \((n-1)(n+1) = n^2 -1\) chia hết cho cả \(8;3\)
\(=> n^2 - 1 \) chia hết cho \(24 (đpcm)\)
Goi b la so nghuyen to lon hon 3 chia cho 3 xay ra 3 truong hop truong hop 1:b chia het cho 3 suy ra b khong phai la so nghuyen to (khong duoc) truong hop 2 :b chia cho 3 du 1 (duoc truong hop 3:b cia cho 3 du 2 (duoc)
b) vì p là số nguyên tố>3(gt)
=>p có dạng 3k+1 howacj 3k+2
Nếu p=3k+2
=> p+4=3k+6 ⋮ 3
mà p+4 là số nguyên tố>3(do p>3)
=>p+4=3k+6 không thỏa mãn p+4 là số nguyên tố
Nếu p=3k+1
=> p+4=3k+5 (hợp lí)
vậy p+8 là hợp số
=>p+8=3k+9 ⋮ 3
=>p+8 là hợp số
c)vì p là số nguyên tố>3(gt)
=>p lẻ =>(p-1)(p+1) là tích 2 số chẵn liên tiếp
g/s với kϵN ta có 2k(2k+2)là tích 2 chẵn liên tiếp
2k(2k+2)=4k(k+1)
với kϵN ta có k(k+1)là tích 2 số tự nhiên liên tiếp
=> k(k+1)⋮2
=>4k(k+1)⋮8
=>tích 2 số tự nhiên liên tiếp luôn chia hết cho 8
=>(p-1)(p+1) ⋮ 8 (1)
ta có p-1; p; p+1 là 3 số tự nhiên liên tiếp
=>(p-1)p(p+1)⋮3
mà p là số nguyên tố>3(gt) => p không chia hết cho 3
=> (p-1)(p+1) ⋮ 3 (2)
từ (1),(2) kết hợp với 3; 8 là 2 số nguyên tố cùng nhau
=> (p-1)(p+1) ⋮ (3.8)
=> (p-1)(p+1) ⋮ 24
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
HAPPY NEW YEAR!!!!!!!!!!!!
P là số nguyên tố lớn hơn 3 => P ko chia hết 2 và 3
ta có : P ko chia hết 2
=> P-1 và P+1 là 2 số chẵn liên tiếp =>(P-1)x(P+1)chia hết cho 8 (1)
mặt khác : P ko chia hết cho 3
nếu P=3k+1 thì P-1=3k+3 chia hết cho 3 => (P-1(P+1) chia hết 3
<=> Nếu P=3k+2 thì p-1=3k chia hết cho 3=> (P-1 (p+1) chia hết cho 3(2)
từ (1),(2) => (p-1)x(p+1) chia hết cho 8 cho 3 mà (8;3)=1=>(p-1)x(p+1) chia hết 24
Vì p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p=2k+1
Khi đó: (p-1).(p+1)=(2k+1-1).(2k+1+1)=2k.(2k+2)=2k.2.(k+1)=4.k.(k+1)
Vì k và k+1 là 2 số tự nhiên liên tiếp
=>k.(k+1) chia hết cho 2
=>4.k.(k+1) chia hết cho 4.2
=>4.k.(k+1) chia hết cho 8
=>(p-1).(p+1) chia hết cho 8(1)
Lại có: (p-1).(p+1)=p2-1
Vì p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
=>p2 chia 3 dư 1
=>p2-1 chia hết cho 3
=>(p-1).(p+1) chia hết cho 3(2)
Từ (1) và (2) ta thấy:
(p-1).(p+1) chia hết cho 8 và 3
Mà (8,3)=1
=>(p-1).(p+1) chia hết cho 8.3
=>(p-1).(p+1) chia hết cho 24
Vậy (p-1).(p+1) chia hết cho 24
Vì p là số nguyên tố lớn hơn 3 nên p lẻ
=> p+2015 và p+2017 là 2 số chẵn liên tiếp
=> (p+2015)(p+2017) chia hết cho 8(1)
mặt khác p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 và 3k+2
Nếu p=3k+1 thì (p+2015)(p+2017)=(3k+1+2015)(3k+1+2017)=3(k+672)(3k+2018) chia hết cho 3=>(p+2015)(o+2017) chia hết cho 3(2)
Nếu p=3k+2 chứng minh tương tự ta đc (p+2015)(p+2017) chia hết cho 3(3)
Từ (1),(2),(3) => (p+20150(p+2017) chia hết cho 24
=> ĐPCM
tìm x sao cho 2x + 2x+1 + 2x+2 + 2x+3 + ... +2x+2015 = 22017 - 2
giải giúp mình với
Vì p là số nguyên tố lớp hơn a nên p là số lẻ.
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)⋮8\text{ }\) (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\) và \(3k+2\) \(\left(k\inℕ^∗\right)\)
+) Với \(p=3k+1\)
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2016\right)\left(3k+2018\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2016⋮3\) ở số đầu tiên) (2)
+) Với \(p=3k+2\)
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2017\right)\left(3k+2019\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2019⋮3\) nên số thứ hai chia hết cho 3 (3)
Từ (1) ; (2) và (3), suy ra \(\left(p+2015\right)\left(p+2017\right)⋮24\) (đpcm)
Ta có : (p-1)(p+1) = p2 - 1
Vì p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3. Suy ra : p2 không chia hết cho 3
\(\Rightarrow\)p2 chia 3 dư 1 (Vì p2 là số chính phương)
\(\Rightarrow\)p2 -1 \(⋮\)3
Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 2. Suy ra p-1\(⋮\)2 và p+1\(⋮\)2.
\(\Rightarrow\)(p-1)(p+1) là tích của 2 số tự nhiên liên tiếp
Do đó: (p-1)(p+1) \(⋮\)8
Vì (p-1)(p+1) chia hết cho 3 và 8 nên (p-1)(p+1) \(⋮\)24 (đpcm)