K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 20: Tam giác ABC vuông tại B suy ra:   A.  AC2  = AB2 + BC2 ­                                   B.  AC2  = AB2 - BC2   C.  BC2  = AB2 + AC2                                    D.  AB2  = BC2 + AC2Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?   A.  Tại ...
Đọc tiếp

Câu 20: Tam giác ABC vuông tại B suy ra:

   A.  AC2  = AB+ BC2 ­                                   B.  AC2  = AB- BC2

   C.  BC2  = AB+ AC2                                    D.  AB2  = BC+ AC2

Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?

   A.  Tại  B                                                      B.  Tại C

   C.  Tại A                                                       D.  Không phải là tam giác vuông

Câu 22: Cho ABC có  = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:

   A.  6,5 cm                    B.  5,5 cm                     C.  6 cm                       D.   6,2 cm

Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:

A.  3cm, 4dm, 5cm.         B.  5cm, 14cm, 12cm. 

C.  5cm, 5cm, 8cm.         D.  9cm, 15cm, 12cm.

Câu 24: Cho ABC có  AB = AC và  = 600, khi đó tam giác ABC là:

   A.  Tam giác vuông                                       B.   Tam giác cân

   C.  Tam giác đều                                           D.  Tam giác vuông cân

Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:

A.  ∠A ≤ 900                                 B. ∠A > 900                            C. ∠A < 900                       D. ∠A = 900

Ai giúp mình với ạ!

1
13 tháng 3 2022

Câu 20: Tam giác ABC vuông tại B suy ra:

   A.  AC2  = AB+ BC2 ­                                   B.  AC2  = AB- BC2

   C.  BC2  = AB+ AC2                                    D.  AB2  = BC+ AC2

Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?

   A.  Tại  B                                                      B.  Tại C

   C.  Tại A                                                       D.  Không phải là tam giác vuông

Câu 22: Cho ABC có  = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:

   A.  6,5 cm                    B.  5,5 cm                     C.  6 cm                       D.   6,2 cm

Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:

A.  3cm, 4dm, 5cm.         B.  5cm, 14cm, 12cm. 

C.  5cm, 5cm, 8cm.         D.  9cm, 15cm, 12cm.

Câu 24: Cho ABC có  AB = AC và  = 600, khi đó tam giác ABC là:

   A.  Tam giác vuông                                       B.   Tam giác cân

   C.  Tam giác đều                                           D.  Tam giác vuông cân

Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:

A.  ∠A ≤ 900                                 B. ∠A > 900                            C. ∠A < 90                      D. ∠A = 900

15 tháng 2 2019

Đáp án: D

a sai vì nếu tam giác ABC thỏa mãn AB + AC2 = BC2 thì tam giác ABC vuông tại A không phải vuông tại B.

b, c, d đúng.

a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔABH∼ΔCBA(g-g)

\(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)

a: \(\widehat{DAC}=90^0-30^0=60^0\)

\(\widehat{C}=90^0-30^0=60^0\)

Do đó: \(\widehat{DAC}=\widehat{C}=60^0\)

hay ΔDAC đều

b : Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}\)

nên AC/BC=1/2

=>AC=1/2BC

16 tháng 3 2022

a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)

\(AD=AB;AC=AE\)

\(\Rightarrow\)△ADC=△ABE (c-g-c).

b) AB cắt DC tại F.

 \(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)

\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)

 

16 tháng 3 2022

a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)

\(AD=AB;AC=AE\)

\(\Rightarrow\)△ADC=△ABE (c-g-c).

b) AB cắt DC tại F.

 \(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)

\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)

c) Trên tia đối IA lấy G sao cho IA=IG

\(\Rightarrow\)△ADI=△GEI (c-g-c) \(\Rightarrow\)AD//GE.

△DGI=△EAI (c-g-c) \(\Rightarrow\)DG//AE ; DG=AE=AC.

\(90^0+\widehat{BAH}+\widehat{DAG}+90^0+\widehat{GAE}+\widehat{HAC}=360^0\)

\(\Rightarrow\widehat{BAC}+\widehat{DAE}=180^0\)

\(\Rightarrow\widehat{BAC}=\widehat{ADG}\)

\(\Rightarrow\)△ADG=△BAC (c-g-c).

\(\widehat{ABC}+\widehat{BAH}=\widehat{DAG}+\widehat{BAH}=90^0\)