Có bao nhiêu số chính phương nhỏ hơn 1 500 000 chia cho 8 dư 5?
A. 0
B. 1500
C. 1200
D. 1008
[giải chi tiết giúp mk với ạ]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề sai chia cho 3 là ko phải , phải là 13
a chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m ∈ N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n ∈ N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) ⇔ a + 83 chia hết cho 143
⇒ a = 143k - 83 (k ∈ N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2.
Khi đó a = 203
Để thoả mãn số a chia 2 dư 1, chia 5 dư 1, chia 7 dư 1 thì a là 2 x 5 x 7 + 1 = 71
(Giải thích: (phần này k ghi nhé) nếu một số chia hết cho vài số nào đó và số đó cần là số bé nhất => số đó chính là tích của các số là ước của nó)
Mà số này chia hết cho 9 nên số a tối thiểu là 71 x 9 = 639
Đáp số: 639
hàng trăm là 8 (gọi 2 số chưa bt là ab) : 8ab
chia 2 dư 1 = b là số lẻ
chia 5 dư 3 = 3 hay 8
mà nó là số lẻ nên b chính là 3
chia hết cho 3 = tổng các chữ số chia hết cho 3
ta có : 8 + a + 3 = chia hết cho số 3
hoặc 11 + a = chia hết cho 3
a chỉ có thể là : 1 ; 4 ; 7
vậy số cần tìm là : 813 ; 843 ; 873
Muốn tạo số chia hết cho 4 thì 2 chữ số tận cùng phải chia hết cho 4
Gọi các số cần tìm có dạng \(\overline{abc}\left(a,b,c\in N;0< a< 10;0\le b,c< 10\right)\)
Mà \(\overline{abc}⋮4\Rightarrow\overline{bc}\in\left\{00;04;12;16;20;24;40;44;60;64\right\}\)
Với mỗi cặp \(\overline{bc}\) ta có \(a\in\left\{1;2;4;6\right\}\left(4\text{ cách chọn}\right)\)
Vậy có thể tạo \(4\cdot10=40\) số thỏa yêu cầu đề
a chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m ∈ N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n ∈ N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) ⇔ a + 83 chia hết cho 143
⇒ a = 143k - 83 (k ∈ N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203
k cho mk nha
Số chính phương khi chia cho 8 chỉ có thể có số dư là 0, 1, 4
\(\Rightarrow\)Số chính phương khi chia cho 8 không thể dư 5
\(\Rightarrow\)Chọn đáp án A
Đặt số chính phương là \(n^2\).
- \(n=4k\): \(n^2=\left(4k\right)^2=16k^2⋮8\).
- \(n=4k+2\): \(n^2=\left(4k+2\right)^2=16k^2+16k+4\)chia \(8\)dư \(4\).
- \(n=4k\pm1\): \(n^2=\left(4k\pm1\right)^2=16k^2\pm8k+1\)chia \(8\)dư \(1\).
Vậy không có số chính phương nào chia \(8\)dư \(5\).