K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

Bạn xem lại câu hỏi nhé. Thiết diện cắt bởi mặt phẳng nào nhỉ?

30 tháng 1 2021

minh viết thiếu thiết diện cắt bơi mp (anpha) qua o // SD và BC

13 tháng 4 2018

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .  

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α  và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .

MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a . 

NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 . 

Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .

4 tháng 1 2019

1 tháng 2 2018

Vì SA vuông góc (ABCD)

=>SA vuông góc CD

Gọi I là trung điểm của AD

=>AI=BC=a

mà AI//BC

nên AB=CI=a

=>AB=CI=ID

=>ΔACD vuông tại C

=>CD vuông góc AC

=>CD vuông góc (SAC)

=>(SCD) vuông góc (SAC)

Vẽ AE vuông góc SC tạiE

=>AE vuông góc (SCD)

mà \(A\in\left(P\right)\perp\left(SCD\right)\)

nên \(AE\in\left(P\right)\)

=>\(E=SC\cap\left(P\right)\)

\(E\in\left(P\right)\cap\left(SCI\right)\)

\(\left(P\right)\supset AB\)//CI thuộc (SCI)

=>(P) cắt (SCI)=Ex//AB//CI

Gọi F=Ex giao SI

=>(P) cắt (SAD) tại AJ

Gọi F=AJ giao SD

=>F=(P)giao (SD)

=>Tứ giác cần tìm là ABEF

18 tháng 1 2017

Đáp án A

2 tháng 5 2017

 

Đáp án A

 

∆ DCM là tam giác đều cạnh a

=> SH ⊥ (ABCD) với H là tâm của  ∆ DCM

Do đó (SA;(ABCD))

1 tháng 2 2022

Gọi N, Q lần lượt là trung điểm của AB , CD \(\Rightarrow\left\{{}\begin{matrix}MN\perp AB\\MQ\perp AB\end{matrix}\right.\)

Qua N kẻ đường thẳng song song với BC , cắt SC tại P

suy ra thiết diện của mặt phẳng (\(\alpha\) ) và hình chóp là MNPQ

Vì MQ là đường t/b của hình thang ABCD , \(\Rightarrow MQ=\dfrac{3a}{2}\)

MN là đường t/b của tam giác SAB; \(MN=\dfrac{SA}{2}=a\)

NP là đường t/b của tam giác SBC ; \(\Rightarrow NP=\dfrac{BC}{2}=\dfrac{a}{2}\)

Vậy diện tích hình thang MNPQ là : \(S_{MNPQ}=\dfrac{MN.\left(NP+MQ\right)}{2}=\dfrac{a}{2}.\left(\dfrac{a}{2}+\dfrac{3a}{2}\right)=a^2\)