K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

a) Vì DE_|_ AB (gt) => ^DEA=90o

         DF_|_ AC (gt)=>^DFA=90o

         t/gABC vuông tại A (gt) => ^EAF=90o

=> tứ giác AFDE là hcn (đpcm) ( tứ giác có 3 góc _|_)

b) Vì E đối xứng với G qua D

 => ED=GD => D là trung điểm EG

         H đối xứng với F qua D

=> HD=DF => D là trung điểm HF

Do đó: EFGH là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đường) (1)

Lại có DE_|_AB (gt) mà E đối xứng với G qua D

=>EG_|_ AB

nên: GD_|_HF=> GE_|_ HF (*)

Mặt khác: DF_|_AC (gt) mà H đối xứng với F qua D

=> HF_|_AC

nên: HD_|_EG=> HF_|_EG (**)

Từ (***) => 2 đường chéo GE và HF _|_ với nhau (2)

Từ (1) và (2) => EFGH là hình thoi (hbh có 2 đường chéo _|_ với nhau)

c) Vì: EFGH là hình thoi

=> EH//FG

=> AD//FG (3)

Mà BH và CG cắt nhau tại I ( I trên HG)

=>AI//GF (4)

Từ (3) và (4) => A;D;I thẳng hàng ( tiền đề ơ-clit) ...câu này o bt đúng hay o còn tùy cái hình nx :D

ABCFEDG----H------I

22 tháng 5 2015

A B C F M E

a)ta có góc FAE=góc MEA=góc MFA=90o

=>AEMF là hình chữ nhật

b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F

MF chung

AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)

Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)

=>CF=AF (2 cạnh tương ứng)

=>F là trung điểm CA

mà F lại là trung điểm của MN 

=>MANC là hình bình hành

ta lại có CA vuông góc với MN

=>MANC là hình thoi

c)

ta có MC=MB ( AM là trung tuyến của BC)

ME song song AC (ME song song FA)

=> AE=EB

=>MF=AE(AEMF là hình vuông)

mà MF=NF(N là điểm đối xứng của M qua F)

      AE=EB(chưng minh trên)

=>MN=AB

Mà MN=AC( MANC là hình vuông)

nên : AB=AC

=> tam giác ABC vuông cân tại A

Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông

20 tháng 1 2019

hello how are you

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ADHE là hình chữ nhật

=>HD//AE và HD=AE

Ta có: HD//AE

D\(\in\)HF

Do đó: DF//AE

Ta có; HD=AE

HD=DF

Do đó: AE=DF

Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

c: Ta có: AEDF là hình bình hành

=>AF//DE

mà A\(\in\)KF

nên KA//ED

Ta có: EH//AD

E\(\in\)KH

Do đó: KE//AD

Xét tứ giác ADEK có

AD//EK

AK//DE

Do đó: ADEK là hình bình hành

=>AK=DE

mà DE=AF(AEDF là hình bình hành)

nên AF=AK

mà K,A,F thẳng hàng

nên A là trung điểm của KF

d: Xét tứ giác DHME có

DH//ME

DE//MH

Do đó: DHME là hình bình hành

=>DH=EM

mà DH=EA

nên EM=EA

=>E là trung điểm của AM

Xét tứ giác AHMK có

E là trung điểm chung của AM và HK

=>AHMK là hình bình hành

Hình bình hành AHMK có AM\(\perp\)HK

nên AHMK là hình thoi

13 tháng 5 2016

Ta có CE vuông góc AB (GT)

suy ra CE là đường cao (1)

Ta có BD vuông góc AC(GT)

suy ra BD là đường cao (2)

Mà BD giao CE tại H 

Từ (1) và (2) suy ra H là trực tâm (định nghĩa )

suy ra AM vuông góc BC (1)

Ta có tam giác ABC cân tại A (GT)

suy ra AB=AC (định nghĩa ) 

Ta có AM vuông góc BC (CMT)

suy ra góc AMB = góc AMC = 90

Xét tam giác AMB và tam giác AMC có 

AM chung 

góc AMB = góc AMC =90

AB= AC(CMT)

suy ra tam giác AMB = tam giác AMC (ch-cgv)

suy ra M là trung điểm BC (2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

OK rồi đó

21 tháng 7 2019

a) Xét tam giác DBM và tam giác ABM có:

BM: là cạnh huyền (vừa cạnh chung)

^MDB = ^MAB = 90o

^DBM = ^ABM (giả thiết do BM là tia phân giác)

\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)

\(\Rightarrow\) AB = BD

b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:

AB = BD (CMT)

^B chung

^BAC = ^EDB = 90o

\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)

c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)

Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.

d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.

Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.

Đến đấy chịu, khi nào nghĩ ra tính tiếp.

a)Xét ∆ vuông BAM và ∆ vuông BDM ta có : 

BM chung 

ABM = DBM ( BM là phân giác) 

=> ∆BAM = ∆BDM ( ch-gn)

=> BA = BD 

AM = MD

b)Xét ∆ vuông ABC và ∆ vuông DBE ta có : 

BA = BD 

B chung 

=> ∆ABC = ∆DBE (cgv-gn)

c) Xét ∆ vuông AKM và ∆ vuông DHM ta có : 

AM = MD( cmt)

AMK = DMH ( đối đỉnh) 

=> ∆AKM = ∆DHM (ch-gn)

=> MAK = HDM ( tương ứng) 

Xét ∆AMN và ∆DNM ta có : 

AM = MD 

MN chung 

MAK = HDM ( cmt)

=> ∆AMN = ∆DNM (c.g.c)

=> DNM = ANM ( tương ứng) 

=> MN là phân giác AND 

d) Vì MN là phân giác AND 

=> M , N thẳng hàng (1)

Vì BM là phân giác ABC 

=> B , M thẳng hàng (2)

Từ (1) và (2) => B , M , N thẳng hàng