giải lim
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\)
\(=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+...+\dfrac{1}{\left(n-1\right)\cdot\left(n+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+...+\dfrac{2}{\left(n-1\right)\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{\left(n-1\right)}-\dfrac{1}{\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\cdot\left(\dfrac{3}{2}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{3}{4}-\dfrac{1}{2n+2}\)
\(\lim\limits u_n=\lim\limits\left(\dfrac{3}{4}-\dfrac{1}{2n+2}\right)\)
\(=\lim\limits\dfrac{3}{4}-\lim\limits\dfrac{1}{2n+2}\)
\(=\dfrac{3}{4}-\lim\limits\dfrac{\dfrac{1}{n}}{2+\dfrac{1}{n}}\)
=3/4
=>Chọn A
Hiển nhiên là cách đầu sai rồi em
Khi đến \(\lim x^2\left(1-1\right)=+\infty.0\) là 1 dạng vô định khác, đâu thể kết luận nó bằng 0 được
Với FX580 hình như tính được luôn
Còn với mọi dòng máy thì:
a. Nhập \(\dfrac{X^2+2X-3}{2X^2-X-1}\) và CALC với \(x=1,000000001\), máy cho kết quả \(\dfrac{4}{3}\)
b. Nhập \(\dfrac{\left|1-3X\right|}{3-X}\) và CALC với \(2,99999999\) (\(x\rightarrow3^-\) nên CALC với giá trị nhỏ hơn 3 1 chút xíu, nếu \(3^+\) thì sẽ CALC với giá trị lớn hơn 3 chút xíu)
Máy cho kết quả rất lớn, dấu dương, hiểu là \(+\infty\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{7+x^3}-2\right)-\left(\sqrt{3+x^2}-2\right)}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^3-1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x^2-1}{\sqrt{3+x^2}+2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^2+x+1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x+1}{\sqrt{3+x^2}+2}}{1}=\dfrac{3}{12}-\dfrac{2}{4}=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}\).
Giới hạn này thiếu x tiến tới bao nhiêu nên ko tính được
Lời giải:
Theo định nghĩa về giới hạn thì khi \(\lim_{x\to -\infty}f(x)=2; \lim_{x\to -\infty}g(x)=3\) thì \(\lim_{x\to -\infty}[f(x)-2]=0; \lim_{x\to -\infty}[g(x)-3]=0\)
Khi đó, theo định nghĩa về giới hạn 0 thì với mọi số \(\epsilon >0\) ta tìm được tương ứng $n_1,n_2$ sao cho:
\(\left\{\begin{matrix} |f(x)-2|<\frac{\epsilon}{2}\forall n>n_1\\ |g(x)-3|< \frac{\epsilon}{2}\forall n>n_2\end{matrix}\right.\)
Gọi \(n_0=\max (n_1,n_2)\)
\(\Rightarrow |f(x)-2+g(x)-3|< |f(x)-2|+|g(x)-3|< \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \) \(\forall n>n_0\)
Điều này chứng tỏ \(f(x)-2+g(x)-3=f(x)+g(x)-5\) có giới hạn 0
\(\Rightarrow \lim_{x\to -\infty}[f(x)+g(x)]=5\)
Lời giải:
\(I=\lim\limits_{x\to 1}\frac{\sqrt{3x+1}(\sqrt[3]{2-x}-1)+(\sqrt{3x+1}-2)}{x-1}=\lim\limits_{x\to 1}\frac{\sqrt{3x+1}.\frac{1-x}{\sqrt[3]{(2-x)^2}+\sqrt[3]{2-x}+1}+\frac{3(x-1)}{\sqrt{3x+1}+2}}{x-1}\)
\(=\lim\limits_{x\to 1}\left[ \frac{-\sqrt{3x+1}}{\sqrt[3]{(2-x)^2}+\sqrt[3]{2-x}+1}+\frac{3}{\sqrt{3x+1}+2} \right]=\) $\frac{1}{12}$
\(1=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{2x}=\lim\limits_{x\rightarrow0}\frac{x}{2x}.\frac{1}{\sqrt{x+4}+2}=\lim\limits_{x\rightarrow0}\frac{1}{2\left(\sqrt{x+4}+2\right)}=\frac{1}{2\left(\sqrt{4}+2\right)}\)
\(2=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}.\frac{1}{\sqrt{x+3}+2}=\lim\limits_{x\rightarrow1}\frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{1+3}+2}\)
\(3=\lim\limits_{x\rightarrow3}\frac{\sqrt{2x+3}-x}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3-x^2}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}\)
\(=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(3-x\right)}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}=\lim\limits_{x\rightarrow3}\frac{x+1}{\left(1-x\right)\left(\sqrt{2x+3}+x\right)}=\frac{3+1}{\left(1-3\right)\left(\sqrt{9}+3\right)}\)
\(4=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{\left(x+1\right)^2\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{2x-1}{\left(x+1\right)^2}=\frac{4-1}{\left(2+1\right)^2}\)
P/s: lần sau bạn sử dụng tính năng gõ công thức ở kí hiệu \(\sum\) góc trên cùng bên trái khung soạn thảo ấy, khó nhìn đề quá chẳng muốn làm
Nguyễn Bích Hà
Điện thoại thì bạn chụp hình đề bài gửi lên cho lẹ :D
Ko gửi trực tiếp được ở câu hỏi, nhưng dưới cmt thì gửi bình thường, chỗ này nè:
Bạn cần câu 8 đúng ko?
\(\left\{{}\begin{matrix}-1\le sina\le1\\-1\le cosb\le1\end{matrix}\right.\) với mọi góc a;b
Do đó: \(-4\le sin2x-3cosx\le4\)
\(\Rightarrow\frac{-4}{x^2+\sqrt{x}+1}\le\frac{sin2x-3cosx}{x^2+\sqrt{x}+1}\le\frac{4}{x^2+\sqrt{x}+1}\)
Mà \(\lim\limits_{x\rightarrow+\infty}\frac{-4}{x^2+\sqrt{x}+1}=\lim\limits_{x\rightarrow+\infty}\frac{4}{x^2+\sqrt{x}+1}=0\)
\(\Rightarrow\lim\limits_{x\rightarrow+\infty}\frac{sin2x-3cosx}{x^2+\sqrt{x}+1}=0\) (theo định lý giới hạn kẹp)