K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\)

\(=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+...+\dfrac{1}{\left(n-1\right)\cdot\left(n+1\right)}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+...+\dfrac{2}{\left(n-1\right)\left(n+1\right)}\right)\)

\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{\left(n-1\right)}-\dfrac{1}{\left(n+1\right)}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\cdot\left(\dfrac{3}{2}-\dfrac{1}{n+1}\right)\)

\(=\dfrac{3}{4}-\dfrac{1}{2n+2}\)

\(\lim\limits u_n=\lim\limits\left(\dfrac{3}{4}-\dfrac{1}{2n+2}\right)\)

\(=\lim\limits\dfrac{3}{4}-\lim\limits\dfrac{1}{2n+2}\)

\(=\dfrac{3}{4}-\lim\limits\dfrac{\dfrac{1}{n}}{2+\dfrac{1}{n}}\)

=3/4

=>Chọn A

NV
3 tháng 3 2021

Hiển nhiên là cách đầu sai rồi em

Khi đến \(\lim x^2\left(1-1\right)=+\infty.0\) là 1 dạng vô định khác, đâu thể kết luận nó bằng 0 được

3 tháng 3 2021

em cảm ơn ạ =)))

NV
8 tháng 3 2022

Với FX580 hình như tính được luôn

Còn với mọi dòng máy thì: 

a. Nhập \(\dfrac{X^2+2X-3}{2X^2-X-1}\) và CALC với \(x=1,000000001\), máy cho kết quả \(\dfrac{4}{3}\)

b. Nhập \(\dfrac{\left|1-3X\right|}{3-X}\) và CALC với \(2,99999999\) (\(x\rightarrow3^-\) nên CALC với giá trị nhỏ hơn 3 1 chút xíu, nếu \(3^+\) thì sẽ CALC với giá trị lớn hơn 3 chút xíu)

Máy cho kết quả rất lớn, dấu dương, hiểu là \(+\infty\)

8 tháng 3 2022

dạ em cảm ơn thầy nhiều ạ!!

30 tháng 1 2021

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{7+x^3}-2\right)-\left(\sqrt{3+x^2}-2\right)}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^3-1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x^2-1}{\sqrt{3+x^2}+2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^2+x+1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x+1}{\sqrt{3+x^2}+2}}{1}=\dfrac{3}{12}-\dfrac{2}{4}=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}\).

NV
19 tháng 3 2022

Giới hạn này thiếu x tiến tới bao nhiêu nên ko tính được

AH
Akai Haruma
Giáo viên
5 tháng 3 2018

Lời giải:

Theo định nghĩa về giới hạn thì khi \(\lim_{x\to -\infty}f(x)=2; \lim_{x\to -\infty}g(x)=3\) thì \(\lim_{x\to -\infty}[f(x)-2]=0; \lim_{x\to -\infty}[g(x)-3]=0\)

Khi đó, theo định nghĩa về giới hạn 0 thì với mọi số \(\epsilon >0\) ta tìm được tương ứng $n_1,n_2$ sao cho:

\(\left\{\begin{matrix} |f(x)-2|<\frac{\epsilon}{2}\forall n>n_1\\ |g(x)-3|< \frac{\epsilon}{2}\forall n>n_2\end{matrix}\right.\)

Gọi \(n_0=\max (n_1,n_2)\)

\(\Rightarrow |f(x)-2+g(x)-3|< |f(x)-2|+|g(x)-3|< \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \) \(\forall n>n_0\)

Điều này chứng tỏ \(f(x)-2+g(x)-3=f(x)+g(x)-5\) có giới hạn 0

\(\Rightarrow \lim_{x\to -\infty}[f(x)+g(x)]=5\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2023

Lời giải:

\(I=\lim\limits_{x\to 1}\frac{\sqrt{3x+1}(\sqrt[3]{2-x}-1)+(\sqrt{3x+1}-2)}{x-1}=\lim\limits_{x\to 1}\frac{\sqrt{3x+1}.\frac{1-x}{\sqrt[3]{(2-x)^2}+\sqrt[3]{2-x}+1}+\frac{3(x-1)}{\sqrt{3x+1}+2}}{x-1}\)

\(=\lim\limits_{x\to 1}\left[ \frac{-\sqrt{3x+1}}{\sqrt[3]{(2-x)^2}+\sqrt[3]{2-x}+1}+\frac{3}{\sqrt{3x+1}+2} \right]=\) $\frac{1}{12}$

NV
29 tháng 2 2020

\(1=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{2x}=\lim\limits_{x\rightarrow0}\frac{x}{2x}.\frac{1}{\sqrt{x+4}+2}=\lim\limits_{x\rightarrow0}\frac{1}{2\left(\sqrt{x+4}+2\right)}=\frac{1}{2\left(\sqrt{4}+2\right)}\)

\(2=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}.\frac{1}{\sqrt{x+3}+2}=\lim\limits_{x\rightarrow1}\frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{1+3}+2}\)

\(3=\lim\limits_{x\rightarrow3}\frac{\sqrt{2x+3}-x}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3-x^2}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}\)

\(=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(3-x\right)}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}=\lim\limits_{x\rightarrow3}\frac{x+1}{\left(1-x\right)\left(\sqrt{2x+3}+x\right)}=\frac{3+1}{\left(1-3\right)\left(\sqrt{9}+3\right)}\)

\(4=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{\left(x+1\right)^2\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{2x-1}{\left(x+1\right)^2}=\frac{4-1}{\left(2+1\right)^2}\)

P/s: lần sau bạn sử dụng tính năng gõ công thức ở kí hiệu \(\sum\) góc trên cùng bên trái khung soạn thảo ấy, khó nhìn đề quá chẳng muốn làm

29 tháng 2 2020

cảm ơn bạn nhiều nha !

mình sẽ rút kinh nghiệm.

NV
31 tháng 5 2020

Nguyễn Bích Hà

Điện thoại thì bạn chụp hình đề bài gửi lên cho lẹ :D

Ko gửi trực tiếp được ở câu hỏi, nhưng dưới cmt thì gửi bình thường, chỗ này nè:

Bài 2: Giới hạn của hàm số

NV
31 tháng 5 2020

Bạn cần câu 8 đúng ko?

\(\left\{{}\begin{matrix}-1\le sina\le1\\-1\le cosb\le1\end{matrix}\right.\) với mọi góc a;b

Do đó: \(-4\le sin2x-3cosx\le4\)

\(\Rightarrow\frac{-4}{x^2+\sqrt{x}+1}\le\frac{sin2x-3cosx}{x^2+\sqrt{x}+1}\le\frac{4}{x^2+\sqrt{x}+1}\)

\(\lim\limits_{x\rightarrow+\infty}\frac{-4}{x^2+\sqrt{x}+1}=\lim\limits_{x\rightarrow+\infty}\frac{4}{x^2+\sqrt{x}+1}=0\)

\(\Rightarrow\lim\limits_{x\rightarrow+\infty}\frac{sin2x-3cosx}{x^2+\sqrt{x}+1}=0\) (theo định lý giới hạn kẹp)