cho tam giác ABC nhọn.Kẻ đường cao AH, vẽ đường tròn tâm(o) đường kính AH cắt AB,AC tại D và E.Đường thẳng DE cắt BC tại F
a, Chứng Minh BDEC nội tiếp
b, Chứng Minh FB.FC=FH bình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BEC=1/2*sđ cug CB=90 độ
=>CE vuông góc AB
góc BKC=1/2*sđ cung BC=90 độ
=>BK vuông góc AC
Xet ΔABC co
BK,CE là đường cao
BK cắt CE tại H
=>H là trực tâm
=>AF vuông góc BC tại F
góc AEC=góc AFC=90 độ
=>AEFC nội tiếp
b: góc EFA=góc ABK
góc KFA=góc ACE
mà góc ABK=góc ACE
nên góc EFA=góc KFA
=>FA là phân giác của góc EFK
c: góc BEF=góc BCA
góc AEK=góc ACB
=>góc FEK=180 độ-2*góc BCA
=góc KOC
=>góc FEK+góc KOF=180 độ
=>EKOF nội tiếp
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó;ΔBEC vuông tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại F
Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)
nên HECF là tứ giác nội tiếp
=>\(\widehat{HEF}=\widehat{HCF}\)