Chứng minh rằng: 1 + 1/1+2 + 1/1+2+3 + 1/1+2+3+4 +...+ 1/1+2+...+n <2 với mọi n thuộc N, n>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)=\frac{1}{15}-\frac{3}{25n+20}\)(1)
kết hợp điều kiện ta có \(\frac{3}{25n+20}\ge\frac{3}{25.2+20}=\frac{3}{70}>0\)
=> \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)(đpcm)
Đặt P = ...
* Chứng minh P > 1/2 :
\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)
Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là:
\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)
\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)
Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)
\(\Rightarrow\)\(P>\frac{1}{2}\)
* Chứng minh P < 3/4 :
Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)
\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)
\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)
...
\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)
\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 )
\(\Rightarrow\)\(P< \frac{3}{4}\)
M = 1/2.2 + 1/3.3 +.....+ 1/n.n
M < 1/1.2 + 1/2.3 +.....+ 1/(n-1).n
M < 1 - 1/2 + 1/2 - 1/3 +......+ 1/n-1 - 1/n
M < 1 - 1/n < 1
=> M < 1 (đpcm)
Ai k mk mk k lại cho,kết bạn luôn nhé!
Đặt \(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+......+\frac{1}{1+2+3+........+n}\)
Ta có: \(1+2=\frac{2.3}{2}\); \(1+2+3=\frac{3.4}{2}\);...........; \(1+2+3+......+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow A=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+.....+\frac{1}{\frac{n\left(n+1\right)}{2}}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{n\left(n+1\right)}\)
\(=1+2\left[\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{n\left(n+1\right)}\right]\)
\(=1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{n+1}\right)=1+1-\frac{2}{n+1}=2-\frac{2}{n+1}< 2\)( đpcm )