K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
24 tháng 1 2021

ta có 

\(A=\left(4+4^2+4^3\right)+..+\left(4^{34}+4^{35}+4^{36}\right)\)

\(\Leftrightarrow A=4.21+4^4.21+..+4^{34}.21\) do đó A chia hết cho 3

mà \(A=\left(4+4^2\right)+\left(4^3+4^4\right)+..+\left(4^{35}+4^{36}\right)\)

hay \(A=20+4^2.20+..+4^{34}.20\) do đó A chia hết cho 5

do A vừa chia hết cho 3 và 5, nên A chia hết cho 15

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

30 tháng 12 2018

\(b,\)Vì p là SNT > 3 => p có dạng : 3k + 1 ; 3k + 2 ( k thuộc N)

Với p = 3k + 1

\(=>\left(3k+2\right)\left(3k\right)⋮3\)(1)

Với p = 3k + 2

\(=>\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

Từ (1) và (2) => ĐPCM

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

10 tháng 7 2021

Ta có: `A = 1 + 4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6 + 4^7 + 4^8`

`= (1 + 4 + 4^2) + (4^3 + 4^4 + 4^5) + (4^6 + 4^7 + 4^8)`

`= 21 + 4^3 (1 + 4 + 4^2) + 4^6 (1 + 4 + 4^2)`

`= 21 + 4^3 . 21 + 4^6 . 21`

`= 21 (1 + 4^3 + 4^6)`

Vì \(21\left(1+4^3+4^6\right)⋮3\) nên \(A⋮3\)

11 tháng 11 2021

\(A=\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

\(=21\left(1+...+4^{57}\right)⋮7\)

11 tháng 11 2021

cứ tổng của 3 số liên tiếp được 1 số chia hết cho 7
=> (1+4+4^2)+(4^3+4^4+4^5)+.....+(4^57+4^58+4^59)(20 cặp số)
=> 21+ 4^3(1+4+4^2)+...+4^57(1+4+4^2)
......
Vì 21 chia hết cho 7=> 21.(........) chia hết cho 7=> A chia hết cho 7
đpcm

13 tháng 7 2015

a,=7^4(7^2+7-1)

=7^4.55 vậy nó chia hết cho 55

b,16^5=2^20

2^15(2^5+1)

2^15.33 chia hết cho 33

các câu c,d cũng tương tự

19 tháng 7 2016

deu chia het ca

18 tháng 2 2020

2. b)

Vì 332 chia a dư 17 nên ( 332-17) \(⋮\)a => 315\(⋮\)a

Vì 555 chia a dư 15 nên ( 555-15)\(⋮\)a =>540\(⋮\)a

Vì 315\(⋮\)a mà 540\(⋮\)a nên a \(\in\)ƯCLN( 315;540)

315= 32.5.7

540= 22..33.5

ƯCLN(315;540) =5.32= 45

Vậy...

Ko chắc

18 tháng 2 2020

2

a) ta có : aaa . bbb 

             =a . 111 . b . 111

             =a . 37.3 .b .111

=>   a.37.3.b.111 chia hết cho 37 hay aaa.bbb chia hết cho 37

mình nghĩ thế , ko chắc đúng đâu nhé