K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

cảm ơn

7 tháng 3 2017

\(A=\frac{a^2-2a+1+2}{3a^2-6a+3+5}>=\frac{2}{5}.\)

Dấu bằng xảy ra khi và chỉ khi a=1

14 tháng 7 2016

1) \(A=\frac{12}{4+x+\sqrt{x}}\) . Điều kiện xác định là \(x\ge0\)

Nhận thấy A đạt giá trị lớn nhất khi \(\frac{1}{A}\)đạt giá trị nhỏ nhất.

Ta xét \(\frac{1}{A}=\frac{x+\sqrt{x}+4}{12}=\frac{x}{12}+\frac{\sqrt{x}}{12}+\frac{1}{3}\)

Vì điều kiện xác định \(x\ge0\) nên ta có \(\frac{1}{A}\ge\frac{1}{3}\)

\(\Rightarrow A\le3\)

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy A đạt giá trị lớn nhất là 3 tại x = 0

2) Từ \(6a^2-15ab+5b^2=0\) , chia cả hai vế của đẳng thức cho \(b^2\ne0\) được : 

\(6\left(\frac{a}{b}\right)^2-15.\frac{a}{b}+5=0\) . Đặt \(x=\frac{a}{b}\) , phương trình trở thành :

\(6x^2-15x+5=0\Leftrightarrow\orbr{\begin{cases}x=\frac{15+\sqrt{105}}{12}\\x=\frac{15-\sqrt{105}}{12}\end{cases}}\)

Đến đây xét từng trường hợp của x rồi biểu diễn b theo a và thay vào D là xong.

(Chắc đây là đề thi Casio nên kết quả sẽ rất lẻ)

29 tháng 3 2019

\(A=\frac{6a+2b}{2a+a+b}+\frac{3a+b}{2a+a+b}=\frac{9a+3b}{3a+b}=3\)

4 tháng 2 2017

a) \(a\ne\frac{5}{2};\frac{2}{3}\)

Đặt \(A=\frac{2a-9}{2a-5}+\frac{3a}{3a-2}=2+\frac{2}{3a-2}-\frac{4}{2a-5}\)

\(A=2\Leftrightarrow\frac{2}{3a-2}-\frac{4}{2a-5}=0\Leftrightarrow4a-12a+8=0\)

\(\Leftrightarrow-8a-2=0\Leftrightarrow-2\left(4a+1\right)=0\Leftrightarrow a=-\frac{1}{4}\)

Vậy A=2 <=> a=-1/4

b) \(a\ne-\frac{4}{3};-4\)

Đặt \(B=\frac{3a+2}{3a+4}+\frac{a-2}{a+4}=2-\frac{2}{3a+4}-\frac{6}{a+4}\)

\(B=2\Leftrightarrow-\frac{2}{3a+4}-\frac{6}{a+4}=0\Leftrightarrow-2a-8-18a-24=0\)

\(\Leftrightarrow-20a-32=0\Leftrightarrow a=-\frac{8}{5}\)

Vậy B=2 <=> a= -8/5

5 tháng 2 2017

tks bạn nha

AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Lời giải:

\(a+b=9\Rightarrow 2a+9=2a+(a+b)=3a+b\)

\(\Rightarrow \frac{6a+2b}{2a+9}=\frac{6a+2b}{3a+b}=\frac{2(3a+b)}{3a+b}=2(1)\)

\(a+b=9\Rightarrow b=9-a\Rightarrow -3a-b=-3a-(9-b)=-2a-9\)

\(\Rightarrow \frac{-3a-b}{-2a-9}=\frac{-2a-9}{-2a-9}=1(2)\)

Từ \((1);(2)\Rightarrow A=\frac{6a+2b}{2a+9}+\frac{-3a-b}{-2a-9}=2+1=3\)

9 tháng 9 2016

a) \(a>4\)cũng có thể là \(a\le-4\)

b) \(a\ge1\)cũng có thể là \(a\le-1\)

5 tháng 4 2017

Deo biet