cho HPT :mx-y=m+1 và 2x+3y=4-m.tìm m để HPT có nghiệm duy nhất (x;y) sao cho x+y=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Cho hệ phương trình:
{mx+y=52x−y=−2(I){mx+y=52x−y=−2(I)
a) Với m=1 ta có hệ phương trình:
{x+y=52x−y=−2{x+y=52x−y=−2
Cộng vế với vế ta được:
3x=3⇔x=1⇒y=2x+2=43x=3⇔x=1⇒y=2x+2=4
Vậy với m=11m=11 thì hệ phương trình (I) có nghiệm x=1 và y=4
b) Nghiệm (x0,y0)(x0,y0) của (I) thỏa mãn x0+y0=1x0+y0=1
nên ta có hệ phương trình:
⎧⎪⎨⎪⎩x+y=1(1)mx+y=5(2)2x−y=−2(3){x+y=1(1)mx+y=5(2)2x−y=−2(3)
Lấy (1) + (3) ta được: 3x=−1⇒x=−13⇒y=1−x=433x=−1⇒x=−13⇒y=1−x=43
Thay vào (2) suy ra m=5−yx=−11m=5−yx=−11
Vậy với m=−11m=−11 thì nghiệm của hệ phương trình (I) có tổng là 1.
2) Từ x+my=2⇒x=2−myx+my=2⇒x=2−my
Thay vào phương trình mx−2y=1mx−2y=1 ta được:
m(2−my)−2y=1⇒y=2m−1m2+2m(2−my)−2y=1⇒y=2m−1m2+2
⇒x=2−m2m−1m2+2⇒x=2−m2m−1m2+2
x=m+4m2+2x=m+4m2+2
Do m2+2>0m2+2>0 ∀m∀m
⇒x>0⇒m+4>0⇒m>−4⇒x>0⇒m+4>0⇒m>−4 và y<0⇒2m−1<0⇒m<12y<0⇒2m−1<0⇒m<12
Vậy với −4<m<12−4<m<12 thì phương trình có nghiệm duy nhất mà x>0,y<0
a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)
=> HPT vô nghiệm
b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )
HPT vô nghiệm
<=> ( * ) vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)
<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2
<=> m = -1
a) Thay \(m=1\) vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy ...
b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=2m-1-3x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=-m-1\end{matrix}\right.\)
Ta có: \(x^2+y^2=5\)
\(\Rightarrow m^2+m^2+2m+1=5\) \(\Leftrightarrow m^2+m-2=0\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Vậy ...
c) Hệ phương trình luôn có nghiệm duy nhất
Ta có: \(x-3y>0\)
\(\Rightarrow m-3\left(-m-1\right)>0\)
\(\Leftrightarrow4m+3>0\) \(\Leftrightarrow m>-\dfrac{3}{4}\)
Vậy ...
a) Thay m=1 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=5-2\cdot2=1\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)
1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)
=>\(\dfrac{m+m-1}{m-1}\ne0\)
=>\(\dfrac{2m-1}{m-1}\ne0\)
=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)
\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)
Để x và y trái dấu thì x*y<0
=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)
=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)
=>4m+3>0
=>m>-3/4
Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)
2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)
=>\(2m-1\in\left\{1;-1;5;-5\right\}\)
=>\(2m\in\left\{2;0;6;-4\right\}\)
=>\(m\in\left\{1;0;3;-2\right\}\)
Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2m+10\right)x+6y=2\\3mx+6y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(10-m\right)x=14\\mx+2y=-4\end{cases}}\)
Để hệ phương trình có 1 nghiệm duy nhất thì phương trình (10 - m)x = 14 cũng có 1 nghiệm duy nhất.
Điều này xảy ra khi \(m\ne10\)
Khi đó, hệ có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{14}{10-m}\\y=\frac{40+13m}{2m-20}\end{cases}}\)