GPT sau: \(\cos10x=2\cos4x\sin x-\cos2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2sinx+2\sqrt{3}cosx-\sqrt{3}sin2x+cos2x=\sqrt{3}cosx+cos2x-2sinx+2\)
\(\Leftrightarrow4sinx+\sqrt{3}cosx-2\sqrt{3}sinx.cosx-2=0\)
\(\Leftrightarrow-2sinx\left(\sqrt{3}cosx-2\right)+\sqrt{3}cosx-2=0\)
\(\Leftrightarrow\left(1-2sinx\right)\left(\sqrt{3}cosx-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cosx=\dfrac{2}{\sqrt{3}}>1\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)
\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)
\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)
\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)
a) Pt \(\Leftrightarrow3.cos4x-\left(cos6x+1\right)=1\)
\(\Leftrightarrow3cos4x-cos6x-2=0\)
Đặt \(t=2x\)
Pttt:\(3cos2t-cos3t-2=0\)
\(\Leftrightarrow3\left(2cos^2t-1\right)-\left(4cos^3t-3cost\right)-2=0\)
\(\Leftrightarrow-4cos^3t+6cos^2t+3cost-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cost=1\\cost=\dfrac{1+\sqrt{21}}{4}\left(vn\right)\\cost=\dfrac{1-\sqrt{21}}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=k2\pi\\t=\pm arc.cos\left(\dfrac{1-\sqrt{21}}{4}\right)+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\dfrac{1}{2}.arccos\left(\dfrac{1-\sqrt{21}}{4}\right)+k\pi\end{matrix}\right.\) (\(k\in Z\))
Vậy...
a2) \(2cos2x-8cosx+7=\dfrac{1}{cosx}\) (ĐK: \(x\ne\dfrac{\pi}{2}+k\pi\))
\(\Leftrightarrow2.\left(2cos^2x-1\right)-8cosx+7=\dfrac{1}{cosx}\)
\(\Leftrightarrow2.\left(2cos^2x-1\right)cosx-8cos^2x+7cosx=1\)
\(\Leftrightarrow4cos^3x-8cos^2x+5cosx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) (tm) (\(k\in Z\))
Vậy...
a3) Đk: \(x\ne-\dfrac{\pi}{4}+k\pi;x\ne\dfrac{\pi}{2}+k\pi\)
Pt \(\Leftrightarrow\dfrac{\left(1+sinx+1-2sin^2x\right).\dfrac{1}{\sqrt{2}}\left(sinx+cosx\right)}{1+\dfrac{sinx}{cosx}}=\dfrac{1}{\sqrt{2}}cosx\)
\(\Leftrightarrow\dfrac{\left(-2sin^2x+sinx+2\right).\left(sinx+cosx\right)cosx}{cosx+sinx}=cosx\)
\(\Leftrightarrow\left(2+sinx-2sin^2x\right).cosx=cosx\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(ktm\right)\\2+sinx-2sin^2x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}cosx=0\left(ktm\right)\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\) (\(k\in Z\))
Vậy...
a4) Pt \(\Leftrightarrow9sinx+6cosx-6sinx.cosx+1-2sin^2x=8\)
\(\Leftrightarrow6cosx\left(1-sinx\right)-\left(2sin^2x-9sinx+7\right)=0\)
\(\Leftrightarrow6cosx\left(1-sinx\right)-\left(2sinx-7\right)\left(sinx-1\right)=0\)
\(\Leftrightarrow\left(1-sinx\right)\left(6cosx+2sinx+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\6cosx+2sinx=7\left(vn\right)\end{matrix}\right.\) (\(6cosx+2sinx=7\) vô nghiệm do \(6^2+2^2< 7^2\))
\(\Rightarrow sinx=1\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi;k\in Z\)
Vậy...
c.
ĐKXĐ: \(cosx\ne1\)
\(\Leftrightarrow cos2x-1=1-cosx\)
\(\Leftrightarrow2cos^2x-1-1=1-cosx\)
\(\Leftrightarrow2cos^2x+cosx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\left(l\right)\\cosx=-\frac{3}{2}< -1\left(l\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
d.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx\ne1\end{matrix}\right.\)
\(\Leftrightarrow cos2x=tanx-1\)
\(\Leftrightarrow cos^2x-sin^2x=\frac{sinx}{cosx}-1\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx\right)=\frac{cosx-sinx}{-cosx}\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Leftrightarrow tanx=1\left(l\right)\\cosx+sinx=-\frac{1}{cosx}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cos^2x+sinx.cosx=-1\)
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}sin2x=-1\)
\(\Leftrightarrow cos2x+sin2x=-3\)
Do \(\left\{{}\begin{matrix}cos2x\ge-1\\sin2x\ge-1\end{matrix}\right.\) \(\Rightarrow cos2x+sin2x\ge-2>-3\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Vậy pt đã cho vô nghiệm
a.
\(\Leftrightarrow\pi cos2x=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow cos2x=\frac{1}{2}+2k\)
Do \(-1\le cos2x\le1\Rightarrow-1\le\frac{1}{2}+2k\le1\)
\(\Rightarrow k=0\)
\(\Rightarrow cos2x=\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
b.
\(\Leftrightarrow cos4x=1\)
\(\Leftrightarrow4x=k2\pi\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
\(sin5x-2sinx\left(cos4x+cos2x\right)=sin5x-2.2sinx.cosx.cos3x\)
\(=sin5x-2sin2x.cos3x\)
\(=sin5x-\left(sin5x+sin\left(-x\right)\right)\)
\(=-sin\left(-x\right)=sinx\)
GPT: \(\dfrac{\left(\sin x-\cos x\right)\left(\sin2x-3\right)-\sin2x-\cos2x+1}{2\sin x-\sqrt{2}}=0\)
ĐKXĐ: \(sinx\ne\dfrac{\sqrt{2}}{2}\)
\(\left(sinx-cosx\right)\left(sin2x-3\right)+\left(sinx-cosx\right)^2+\left(sin^2x-cos^2x\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sin2x-3\right)+\left(sinx-cosx\right)^2+\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sin2x-3+2sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\\left(sin2x-1\right)+2\left(sinx+1\right)=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)
Kết hợp ĐKXĐ \(\Rightarrow x=-\dfrac{\pi}{4}+k2\pi\)
\(\Leftrightarrow cos10x+cos2x-2cos4x.sinx=0\)
\(\Leftrightarrow2cos6x.cos4x-2cos4x.sinx=0\)
\(\Leftrightarrow cos4x\left(cos6x-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos6x=sinx\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos6x=cos\left(\dfrac{\pi}{2}-x\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
Em cảm ơn ạ