giải hệ phương trình:\(\hept{\begin{cases}\sqrt[3]{x+1}+\sqrt{1-y}=2\\x^2+9y+xy^3=y^4+xy+9x\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{x}{\sqrt{y}}+\frac{2\sqrt{y}}{x}=\frac{2}{x}+\frac{1}{\sqrt{y}}-3\left(1\right)\\x^2-xy-9x+12=0\left(2\right)\end{cases}}\)
Đặt \(\frac{2}{x}=a,\frac{1}{\sqrt{y}}=b\left(b>0\right)\)
\(\left(1\right)\Leftrightarrow\frac{2b}{a}+\frac{a}{b}=a+b-3\)
\(\Leftrightarrow2b^2+a^2+3ab=ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a+2b\right)=\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(a-ab+2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-b\left(3\right)\\a-ab+2b=0\left(4\right)\end{cases}}\)
Giải (3)
\(\left(3\right)\Leftrightarrow\frac{2}{x}=-\frac{1}{\sqrt{y}}\Leftrightarrow\frac{4}{x^2}=\frac{1}{y}\)
\(\Leftrightarrow y=\frac{x^2}{4}\). Thay vào (2) tìm nghiệm (x,y)
Giải (4)
\(\left(4\right)\Leftrightarrow\frac{2}{x}-\frac{2}{\sqrt{y}}+\frac{2}{x\sqrt{y}}=0\)
\(\Leftrightarrow\sqrt{y}-x+2=0\)
Giải tiếp là ra
Học tốt!!!!!!!!!
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
Đặt:
\(\hept{\begin{cases}\sqrt{x+1}=2+t\\\sqrt{y+1}=2-t\end{cases}\Rightarrow t=0}\)
Việc giải raNhận xét: Phép đặt ẩn phụ làm bài toán trở nên rất đơn giản.
\(ĐK:\hept{\begin{cases}x\ge-1\\y\ge-1\\xy\ge0\end{cases}}\)
Hệ tương đương \(\hept{\begin{cases}x+y-\sqrt{xy}=3\\2\sqrt{xy+x+y+1}=14-\left(x+y\right)\end{cases}}\)
Đặt S=x+y;P=\(\sqrt{xy}\)(\(P\ge0\))
\(\Rightarrow\hept{\begin{cases}S-P=3\left(3\right)\\2\sqrt{P^2+S+1}=14-S\left(4\right)\end{cases}}\)
Thay (3) \(S=3+P\)vào (4) ta được:
\(2\sqrt{P^2+P+4}=11-P\Leftrightarrow\hept{\begin{cases}P\le11\\3P^2+26P-105=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}P\le11\\\orbr{\begin{cases}P=3\left(n\right)\\P=\frac{-35}{3}\left(L\right)\end{cases}}\end{cases}}\)đến đây tự xét
\(\Rightarrow P=3\Rightarrow S=3\Rightarrow\hept{\begin{cases}x+y=6\\xy=9\end{cases}}\Rightarrow x=y=3\)
\(\Leftrightarrow\hept{\begin{cases}P\le11\\\orbr{\begin{cases}P=3\left(n\right)\\P=\frac{-35}{3}\left(L\right)\end{cases}}\end{cases}}\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
\(\hept{\begin{cases}\sqrt{x-1}+\sqrt{y-1}=3\left(1\right)\\xy+x+y=x^2-2y^2\left(2\right)\end{cases}}\)
(ĐK : x,y \(\ge\)1)
Biến đổi pt (2) ta được :
xy + x + y = x2 - 2y2
<=>2y2 + xy + y =x2 - x
biến đổi vế phải ta có : \(\Delta=b^2-4ac=1\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{b-\sqrt{\Delta}}{2}=y\\\frac{b+\sqrt{\Delta}}{2}=y\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\left(loại\right)\\y=1\end{cases}}\)
thế y = 1 vào pt (1) ta được :
\(\sqrt{x-1}+\sqrt{1-1}=3\Leftrightarrow x-1=3\Leftrightarrow x=10\)
vậy pt có cặp nghiệm (x,y) là ( 10,1 )
* cái dạng này có trong đề thi hsg toán 10 nha , lên cấp 2 nhiều dạng này á :3 *