Xét biểu thức f(x)= X2 +2(m-1)x +2m-3
Tìm m để f(x) > 0 với mọi x thuộc (1; +∞)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)
\(\Leftrightarrow-7m^2+38m-15< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(KL:m\in\left(5;+\infty\right)\)
Lời giải:
Áp dụng định lý về dấu của tam thức bậc 2
\(f(x)=3x^2-6(2m+1)x+12m+5>0\) với mọi \(x\in \mathbb{R}\)
\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)<0\)
\(\Leftrightarrow 36m^2-6<0\Leftrightarrow -\sqrt{\frac{1}{6}}< m<\sqrt{\frac{1}{6}}\)
Do \(a=1>0\) nên để \(f\left(x\right)>0\) \(\forall x\)
\(\Leftrightarrow\Delta'< 0\)
\(\Leftrightarrow\left(4m-1\right)^2-\left(15m^2-2m-7\right)< 0\)
\(\Leftrightarrow m^2-6m+8< 0\)
\(\Leftrightarrow2< m< 4\)
\(f\left(x\right)>0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(-m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4\left(m^2-2m+1\right)-4\left(-m^2+4m-m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow4m^2-8m+4+4m^2-12m-16< 0\)
\(\Leftrightarrow8m^2-20m-12< 0\)
\(KL:m\in\left(-1;3\right)\)
\(f\left(x\right)=2\left(x^2-6x+9\right)=2\left(x-3\right)^2\)
\(\Rightarrow f\left(x\right)=0\) khi \(x=3\)
\(f\left(x\right)>0\) khi \(x\ne3\)
Vậy:
1. Là phát biểu sai
2. Là phát biểu đúng
3. Là phát biểu đúng
\(f\left(x\right)=\left(x+1\right)\left(x+2m-3\right)\)
\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1< 1\\x=-2m+3\end{matrix}\right.\)
Để \(f\left(x\right)>0\) \(\forall x>1\Rightarrow-2m+3\le1\Leftrightarrow m>1\)