K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Ta có: \(\left(2x+1\right)\left(3y-2\right)=12\)

\(\Leftrightarrow2x+1\) và 3y-2 là các ước của 12

Trường hợp 1: 

\(\left\{{}\begin{matrix}2x+1=1\\3y-2=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\3y=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{14}{3}\end{matrix}\right.\)(loại)

Trường hợp 2:

\(\left\{{}\begin{matrix}2x+1=12\\3y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=11\\3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{2}\\y=1\end{matrix}\right.\)(loại)

Trường hợp 3: 

\(\left\{{}\begin{matrix}2x+1=2\\3y-2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\3y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{8}{3}\end{matrix}\right.\)(loại)

Trường hợp 4: 

\(\left\{{}\begin{matrix}2x+1=6\\3y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{4}{3}\end{matrix}\right.\)(loại)

Trường hợp 5: 

\(\left\{{}\begin{matrix}2x+1=3\\3y-2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)(nhận)

Trường hợp 6: 

\(\left\{{}\begin{matrix}2x+1=4\\3y-2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=3\\3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{5}{3}\end{matrix}\right.\)(loại)

Trường hợp 7: 

\(\left\{{}\begin{matrix}2x+1=-1\\3y-2=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\3y=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{-10}{3}\end{matrix}\right.\)(loại)

Trường hợp 8: 

\(\left\{{}\begin{matrix}2x+1=-12\\3y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-13\\3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-13}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)(loại)

Trường hợp 9: 

\(\left\{{}\begin{matrix}2x+1=-2\\3y-2=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-3\\3y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{2}\\y=\dfrac{-4}{3}\end{matrix}\right.\)(loại)

Trường hợp 10: 

\(\left\{{}\begin{matrix}2x+1=-6\\3y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-7\\3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-7}{2}\\y=0\end{matrix}\right.\)(loại)

Trường hợp 11: 

\(\left\{{}\begin{matrix}2x+1=-3\\3y-2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\3y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-\dfrac{2}{3}\end{matrix}\right.\)(loại)

Trường hợp 12: 

\(\left\{{}\begin{matrix}2x+1=-4\\3y-2=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-5\\3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{2}\\y=\dfrac{-1}{3}\end{matrix}\right.\)(loại)

Vậy: (x,y)=(1;2)

AH
Akai Haruma
Giáo viên
18 tháng 1 2021

Lời giải phần a:

a) 

$3xy+9x-2y=10$

$\Leftrightarrow 3x(y+3)-2(y+3)=4$

$\Leftrightarrow (3x-2)(y+3)=4$

Đến đây, do $3x-2,y+3$ đều là số nguyên, $3x-2$ chia $3$ dư $1$ nên ta xét các TH sau:

$3x-2=1; y+3=4\Rightarrow x=1; y=-1$

$3x-2=4; y+3=1\Rightarrow x=2; y=-2$

$3x-2=-2; y+3=-2\Rightarrow x=0; y=-5$

30 tháng 8 2015

x^2 + 3xy + 2y^2 =  0 

=> x^2 + xy + 2xy + 2y^2 = 0 

=> x(x+y) + 2y ( x+  y ) = 0 =

=> ( x+  2y)( x + y ) = 0 

=> x = -2y hoặc x = -y 

(+) x = -2y thay vào ta có :

 8y^2 + 6y + 5 = 0 giải ra y => x 

(+) thay x = -y ta có :

2y^2 - 3y + 5 = 0 tương tự 

30 tháng 8 2015

Nguyễn Đình Dũng tục tỉu thế

AH
Akai Haruma
Giáo viên
24 tháng 9 2023

Lời giải:

a. $2y(3x-1)+9x-3=7$

$2y(3x-1)+3(3x-1)=7$

$(3x-1)(2y+3)=7$

Vì $3x-1, 2y+3$ đều là số nguyên với mọi $x,y\in N$, và $2y+3>0$ nên ta có bảng sau:

b.

$3xy-2x+3y-9=0$

$x(3y-2)+3y-9=0$

$x(3y-2)+(3y-2)-7=0$

$(3y-2)(x+1)=7$

Đến đây bạn cũng lập bảng tương tự như phần a.

5 tháng 1 2022

\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)

\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)

\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)

\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)

\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)

a: \(=2x^2y^2\cdot\dfrac{1}{4}xy^3\cdot9x^2y^2=\dfrac{9}{2}x^5y^7\)

Bậc là 12

Hệ số là 9/2

c: \(=3x^2y^2\cdot\dfrac{1}{9}x^3y\cdot9x^2y^2=3x^7y^5\)

Bậc là 3

Hệ số là 12

d: \(=16x^6y^2\cdot x^5\cdot y^2\cdot\dfrac{1}{8}y^5z=2x^{11}y^9z\)

Bậc là 21

Hệ số là 2