Tính giá trị của biểu thức:
\(\sqrt{2010\cdot2011\cdot2012\cdot2014\cdot2015\cdot2016+36}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(9911=11\cdot17\cdot53\)
Để \(A=1.3.5...2015+2.4.6....2016⋮9911\)thì:\(\hept{\begin{cases}1.3.5...2015⋮9911\\2.4.6...2016⋮9911\end{cases}}\)
Mà: \(1.3.5...2015=1.3.5...11.13.15.17...53...2015⋮11.17.53=9911\)
và \(2\cdot4\cdot...\cdot2016=2\cdot4\cdot...\cdot22\cdot...\cdot34\cdot...\cdot106\cdot...\cdot2016⋮11\cdot17\cdot54=9911\)
=> đpcm
\(\left(2013.2014+2014.2015+2015.2016\right)\left(1+\frac{1}{3}-1\frac{1}{3}\right)\)
\(=\left(2013.2014+2014.2015+2015.2016\right)\left(\frac{4}{3}-\frac{4}{3}\right)\)
\(=\left(2013.2014+2014.2015+2015.2016\right).0\)
\(=0\)
Tích \(2012^{1000}.2013^{996}.2014^{992}.2015^{2015}.2016^{2016}\)có thừa số 2012 và 2015 nhân với nhau
do đó tích trên có chữ số tận cùng là 0
Khi đó: A có chữ số tận cùng là 7, không là số chính phương.
Ta có: \(\frac{2011\times2012-2}{2010\times2011+4020}=\frac{2011\times\left(2010+2\right)-2}{2010\times2011+4020}=\frac{2011\times2010+4022-2}{2010\times2011+4020}=\frac{2011\times2010+4020}{2010\times2011+4020}=1\)
Vậy \(\frac{2011\times2012-2}{2010\times2011+4020}=1\)
\(P=\frac{2011.2012-2}{2010.2011+4020}=\frac{2010.2011+2.2011-2}{2010.2011+4020}=\frac{2010.2011+4042-2}{2010.2011+4020}=\frac{2010.2011+4040}{2010.2011+4040}=1\)
Vậy P = 1